Free Access
Volume 87, Number 6, November-December 2007
Page(s) 555 - 573
Published online 04 January 2008
References of  Lait 87 (2007) 555-573
  1. Benech R.O., Kheadr E.E., Lacroix C., Fliss I., Impact of nisin producing culture and liposome-encapsulating nisin on ripening of Lactobacillus casei added-Cheddar cheese, J. Dairy Sci. 86 (2003) 1895-1909 [PubMed].
  2. Beshkova D.M., Simova E.D., Frengova G.I., Simov Z.I., Adilov E.F., Production of amino acid by yogurt bacteria, Biotechnol. Prog. 14 (1998) 963-965 [CrossRef] [PubMed].
  3. Boris S., Jiménez-Diaz R., Caso J.L., Barbés C., Partial characterization of a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis UO004, an intestinal isolate with probiotic potential, J. Appl. Microbiol. 91 (2001) 328-333 [CrossRef] [PubMed].
  4. Bradford M.M., A rapid and sensitive method for quantification of microgram quantities of protein using the principle of protein dye-binding, Anal. Biochem. 72 (1976) 248-255 [CrossRef] [PubMed].
  5. Chavagnat F., Casey M.G., Meyer J., Purification, characterization, gene cloning, sequencing, and overexpression of aminopeptidase N from Streptococcus thermophilus A, Appl. Environ. Microbiol. 65 (1999) 3001-3007 [PubMed].
  6. Christensen J.E., Dudley E.G., Rederson J.A., Steele J.L., Peptidases and amino acid catabolism in lactic acid bacteria, Antonie van Leeuwenhoek 76 (1999) 217-246 [CrossRef] [PubMed].
  7. Church F.C., Swaisgood H.E., Porter D.H., Catignani G.L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk protreins, J. Dairy Sci. 66 (1983) 1219-1227.
  8. Doi E., Shibata D., Matoba T., Modified colorimetric nynhydrin methods for peptidase assay, Anal. Biochem. 118 (1981) 173-184 [CrossRef] [PubMed].
  9. El-Soda M., Madkor S.A., Tong P.S., Adjunct cultures: Recent development and potential significance to the cheese industry, J. Dairy Sci. 83 (2000) 609-619 [PubMed].
  10. Fenelon M.A., Beresford T.P., Guinee T.P., Comparison of different bacterial culture systems for the production of reduced fat Cheddar cheese, Int. J. Dairy Technol. 55 (2002) 194-203 [CrossRef].
  11. Fernandez-Espla M.D., Martin-Hernandez M.C., Purification and characterization of a dipeptidase from Lactobacillus casei ssp. casei IFPL 731 isolated from goat cheese made from raw milk, J. Dairy Sci. 80 (1997) 1497-1504 [PubMed].
  12. Fernandez-Espla M.D., Martin-Hernandez M.C., Fox P.F., Purification and characterization of a prolidase from Lactobacillus casei subsp. casei IFPL 731, Appl. Environ. Microbiol. 63 (1997) 314-316 [PubMed].
  13. Fox P.F., Wallace J.M., Morgan S., Lynch C.M., Niland E.J., Tobin J., Acceleration of cheese ripening, Antonie van Leeuwenhoek 70 (1996) 271-297 [CrossRef] [PubMed].
  14. Garault P., Letrot C., Juillard V., Monnet V., La biosynthèse des acides aminés à chaîne branchée et des purines : Deux voies essentielles pour une croissance optimale de Streptococcus thermophilus dans le lait, Lait 81 (2000) 83-90 [CrossRef].
  15. Guédon E., Renault P., Ehrlich S.D., Delorme C., Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzyme by peptide supply, J. Bacteriol. 183 (2001) 3614-3622 [CrossRef] [PubMed].
  16. Guimont C., Change of free amino acids in M17 medium after growth of Streptococcus thermophilus and identification of a glutamine transport ATP-binding protein, Int. Dairy J. 12 (2002) 729-736 [CrossRef].
  17. Habibi-Najafi M.B., Lee B.H., Proline-specific peptidases of Lactobacillus casei subspecies, J. Dairy Sci. 77 (1994) 385-392 [PubMed].
  18. Hannon J.A., Wilkinson M.G., Delahunty C.M., Wallace J.M., Morrissey P.A., Beresford T.P., Use of autolytic starter systems to accelerate the ripening of Cheddar cheese, Int. Dairy J. 13 (2003) 313-323 [CrossRef].
  19. Hebert E.M., Raya R.R., De Giori S., Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062, Appl. Environ. Microbiol. 66 (2000) 5316-5321 [CrossRef] [PubMed].
  20. Hynes E., Bach C., Lamberet G., Ogier J.-C., Son O., Delacroix-Buchet A., Contribution of starter lactococci and adjunct lactobacilli to proteolysis, volatile profile and sensory characteristics of washed-curd cheese, Lait 83 (2003) 31-43 [CrossRef] [EDP Sciences].
  21. Kenny O., FitzGerald R.J., O'Cuinn G., Beresford T., Jordan K., Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus, Int. Dairy J. 13 (2003) 509-516 [CrossRef].
  22. Kiernan R.C., Beresford T.P., O'Cuinn G., Jordan K.N., Autolysis of lactobacilli during Cheddar cheese ripening, Irish. J. Agr. Food Res. 39 (2000) 95-106.
  23. Kunji E.R.S., Miereau I., Hagting A., Poolman B., Konings W.N., The proteolytic systems of lactic acid bacteria, Antonie van Leeuwenhoek 70 (1996) 187-221 [CrossRef] [PubMed].
  24. Laan H., Tan S., Bruinenberg P., Limsowtin G., Broome M., Aminopeptidase activities of starter and non-starter lactic acid bacteria under simulated Cheddar cheese ripening conditions, Int. Dairy J. 8 (1998) 267-274 [CrossRef].
  25. Law J., Haandrikman A., Proteolytic enzymes of lactic acid bacteria. Review article, Int. Dairy J. 7 (1997) 1-11 [CrossRef].
  26. Lee K., Lee J., Kim Y.-H., Moon S.-H., Park Y.-H., Unique properties of four lactobacilli in amino acid production and symbiotic mixed culture for lactic acid biosynthesis, Curr. Microbiol. 43 (2001) 383-390 [CrossRef] [PubMed].
  27. Lefort C., Nardi M., Garault P., Monnet V., Juillard V., Casein utilization by Streptococcus thermophilus results in a diauxic growth in milk, Appl. Environ. Microbiol. 68 (2002) 3162-3165 [CrossRef] [PubMed].
  28. Luoma S., Peltoniemi K., Joutsjoki V., Rantanen T., Tamminen M., Heikkinen I., Palva A., Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis, Appl. Environ. Microbiol. 67 (2001) 1232-1238 [CrossRef] [PubMed].
  29. Lynch C.M., Muir D.D., Banks J.M., McSweeney P.L.H., Fox P.F., Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or Lactobacillus plantarun on Cheddar cheese ripening, J. Dairy Sci. 82 (1999) 1618-1628.
  30. Martinez-Cuesta M.C., Kok J., Herranz E., Peláez C., Requena T., Buist G., Requirement of autolytic activity for bacteriocin-induced lysis, Appl. Environ. Microbiol. 66 (2000) 3174-3179 [CrossRef] [PubMed].
  31. Meijer W., Hugenholtz J., Proteolytic enzyme activity in lactococci grown in different pretreated milk media, J. Appl. Microbiol. 83 (1997) 139-146 [CrossRef] [PubMed].
  32. Mierau I., Tan P.S.T., Haandrikman A.J., Mayo B., Kok J., Konings W., Venema G., Cloning and sequencing of an endopeptidase from Lactococcus, J. Bacteriol. 175 (1993) 2087-2096 [PubMed].
  33. Monnet V., Chapot-Chartier M.P., Gripon J.-C., Les peptidases des lactocoques, Lait 73 (1993) 97-109 [CrossRef] [EDP Sciences].
  34. Monnet V., Nardi M.C., Chopin A., Chopin M.C., Gripon J.-C., Biochemical and genetic characteristics of PepF, an oligopeptidase from Lactococcus lactis, J. Biol. Chem. 269 (1994) 32070-32076 [PubMed].
  35. Morel F., Frot-Coutaz J., Aubel D., Portalier R., Atlan D., Characterization of a prolidase from Bacillus delbrueckii subsp. bulgaricus CNR 397 with an unusual regulation of biosynthesis, Microbiology 145 (1999) 437-446 [PubMed].
  36. Mulholland F., Peptidases from lactococci and secondary proteolysis of milk proteins, in: Andrews A.T., Varley J. (Eds), Biochemistry of Milk Products, The Royal Society of Chemistry, Cambridge, 1994, pp. 83-93.
  37. Neocleous M., Barbano D.M., Rudan M.A., Impact of low concentration factor microfiltration on the composition and aging of Cheddar cheese, J. Dairy Sci. 85 (2002) 2425-2437 [PubMed].
  38. Oommen B.S., McMahon D.J., Oberg C.J., Broadbent J.R., Strickland M., Proteolylic specificity on Lactobacillus delbrueckii subsp. bulgaricus influences functional properties of Mozzarella cheese, J. Dairy Sci. 85 (2002) 2750-2758 [PubMed].
  39. Rul F., Monnet V., Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis, J. Appl. Microbiol. 82 (1997) 695-704 [CrossRef] [PubMed].
  40. Rul F., Gripon J.-C., Monnet V., St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues, Microbiology 141 (1995) 2281-2287.
  41. Sallami L., Kheadr E.E., Fliss I., Vuillemard J.C., Impact of autolytic and proteolytic lactobacilli and nisin-producing culture on proteolysis and sensory characteristics in Cheddar cheese, J. Food Sci. 69 (2004) 24-32 [CrossRef].
  42. Sasaki M., Bosman B.W., Tan P.S.T., Comparison of proteolytic activities in various lactobacilli, J. Dairy Res. 62 (1995) 601-610 [PubMed].
  43. Savijoki K., Palva A., Purification and molecular characterization of a tripeptidase (PepT) from Lactobacillus helveticus, Appl. Environ. Microbiol. 66 (2000) 794-800 [CrossRef] [PubMed].
  44. Shakeel-Ur-Rehman, Banks J.M., McSweeney P.L.H., Fox P.F., Effect of ripening temperature on the growth and significance of non-starter acid bacteria in Cheddar cheese made from raw or pasteurized milk, Int. Dairy J. 10 (2000) 45-53 [CrossRef].
  45. Shihata A., Shah N.P., Proteolytic profiles of yogurt and probiotic bacteria, Int. Dairy J. 10 (2000) 401-408 [CrossRef].
  46. Simov Z.I., Simova E.D., Beshkova D.M., Impact of two starter cultures on proteolysis in Kashkaval cheese, World J. Microbiol. Biotechnol. 22 (2006) 147-156 [CrossRef].
  47. Simova E., Simov Z., Beshkova D., Frengova G., Dimitrov Z., Spasov Z., Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them, Int. J. Food Microbiol. 107 (2006) 112-123 [CrossRef] [PubMed].
  48. Tamime A.Y., Robinson R.K., Biochemistry of fermentation, in: Tamime A.Y., Robinson R.K. (Eds.), Yoghurt. Science and Technology, 2${\rm nd}$ Edition, CRC Press, Boka Raton, USA, 1999, pp. 432-475.
  49. Tjwan-Tan P.S.T., Poolman B., Konings W.N., Proteolytic enzymes of Lactococcus lactis, J. Dairy Res. 60 (1993) 269-286 [PubMed].
  50. Tuler T.R., Callanan M.J., Klaenhammer T.R., Overexpression of peptidases in Lactococcus and evaluation of their release from leaky cells, J. Dairy Sci. 85 (2002) 2438-2450 [PubMed].
  51. Tynkkynen S., Buist G., Kunji E., Kok J., Poolman B., Venema G., Haandrikman A.J., Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis: demonstration of the essential role of oligopeptide transport in the utilization of casein, J. Bacteriol. 175 (1993) 7523-7532 [PubMed].
  52. Van Boven A., Tan P.S.T., Konings W.N., Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2, Appl. Environ. Microbiol. 54 (1988) 43-49 [PubMed].
  53. Vescovo M., Torriani S., Scolari G., Dicks L.M.T., Lactobacillus casei and related species: a review, Ann. Microbiol. Enzymol. 45 (1995) 51-63.
  54. Williams A.G., Banks J.M., Proteolysis and other hydrolytic activities in no-starter lactic acid bacteria (NSLAB) isolated from Cheddar cheese manufactured in the United Kingdom, Int. Dairy J. 7 (1997) 763-774 [CrossRef].
  55. Williams A.G., Felipe X., Banks J.M., Aminopeptidase and dipeptidyl peptidase activity of Lactobacillus spp. and non-starter lactic acid bacteria (NSLAB) isolated from Cheddar cheese, Int. Dairy J. 8 (1998) 255-266 [CrossRef].
  56. Wohlrab Y., Bockelmann W., Purification and characterization of a dipeptidase from Lactobacillus delbrueckii subsp. bulgaricus, Int. Dairy J. 2 (1992) 345-361 [CrossRef].