Free Access
Issue
Lait
Volume 84, Number 6, November-December 2004
Page(s) 517 - 525
DOI https://doi.org/10.1051/lait:2004023
Published online 22 October 2004
References of Lait 84 517-525
  1. Brownlow S., Cabral J.H.M., Cooper R., Flower D.R., Yewdall S.J., Polikarpov I., North A.C.T., Sawyer L., Bovine $\beta$-lactoglobulin at 1.8 angstrom resolution - still an enigmatic lipocalin, Structure 5 (1997) 481-495 [CrossRef] [PubMed].
  2. Bull H.B., Monolayers of $\beta$-lactoglobulin. II. Film molecular weigt, J. Amer. Chem. Soc. 68 (1946) 745-747.
  3. Burova T.V., Grinberg V.Y., Tran V., Haertle T., What may be bovine $\beta$-lactoglobulin Cys121 good for?, Int. Dairy J. (1998) 83-86.
  4. Carrotta R., Bauer R., Waninge R., Rischel C., Conformational characterization of oligomeric intermediates and aggregates in $\beta$-lactoglobulin heat aggregation, Protein Sci. 10 (2001) 1312-1318 [CrossRef] [PubMed].
  5. Clayshulte T.M., Taylor D.F., Henzl M.T., Reactivity of cysteine 18 in oncomodulin, J. Biol. Chem. 265 (1990) 1800-1805 [PubMed].
  6. Creamer L.K., Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine $\beta$-lactoglobulin, Biochemistry 34 (1995) 7170-7176 [PubMed].
  7. Croguennec T., Bouhallab S., Mollé D., O'Kennedy B.T., Mehra R., Stable monomeric intermediate with exposed Cys-119 is formed during heat denaturation of $\beta$-lactoglobulin, Biochem. Biophys. Res. Comm. 301 (2003) 465-471 [CrossRef].
  8. Croguennec T., Mollé D., Mehra R., Bouhallab S., Spectroscopic characterization of heat-induced non-native $\beta$-lactoglobulin monomers, Protein Sci. 13 (2004) 1340-1346 [CrossRef] [PubMed].
  9. D'Alfonso L., Collini M., Baldini G., Does $\beta$-lactoglobulin denaturation occur via an intermediate state?, Biochemitry 41 (2002) 326-333.
  10. Dannenberg F., Kessler H.G., Reaction kinetics of the denaturation of whey proteins in milk, J. Food Sci. 53 (1988) 258-263.
  11. De la Fuente M.A., Singh H., Hemar Y., Recent advances in the characterization of heat-induced aggregates and intermediates of whey proteins, Trends Food Sci. Technol. 13 (2002) 262-274 [CrossRef].
  12. Eigel W.N., Butler J.E., Ernstrom C.A., Farrell H.M., Harwalkar V.R., Jenness R., Whitney R.McL., Nomenclature of proteins of cow's milk: fifth revision, J. Dairy Sci. 67 (1984) 1599-1631.
  13. Fauquant J., Maubois J.-L., Pierre A., Microfiltration du lait sur membrane minérale, Tech. Lait 1028 (1988) 21-23.
  14. Hines M.E., Foegeding E.A., Interactions of $\alpha$-lactalbumin and bovine serum albumin with $\beta$-lactoglobulin in thermally induced gelation, J. Agric. Food Chem. 41 (1993) 341-346.
  15. Huang X.L., Catignani G.L., Swaisgood H.E., Relative structural stabilities of $\beta$-lactoglobulins A and B as determined by proteolytic susceptibility and differential scanning calorimetry, J. Agric. Food Chem. 42 (1994) 1276-1280.
  16. Iametti S., Degregori B., Vecchio G., Bonomi F., Modifications occur at different structural levels during the heat denaturation of $\beta$-lactoglobulin, Eur. J. Biochem. 237 (1996) 106-112 [CrossRef] [PubMed].
  17. Kella N.K.D., Kinsella J.E., Enhanced thermodynamic stability of $\beta$-lactoglobulin at low pH. A possible mechanism, Biochem. J. 255 (1988) 113-118 [PubMed].
  18. Kitabatake N., Wada R., Fujita Y., Reversible conformational change in $\beta$-lactoglobulin A modified with N-ethylmaleimide and resistance to molecular aggregation on heating, J. Agric. Food Chem. 49 (2001) 4011-4018 [CrossRef] [PubMed].
  19. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685 [PubMed].
  20. Léonil J., Mollé D., Fauquant J., Maubois J.-L., Pearce R.J., Bouhallab S., Characterization by ionization mass spectrometry of lactosyl-$\beta$-Lactoglobulin conjugates formed during heat treatment of milk and whey and identification of one lactose binding site, J. Dairy Sci. 80 (1997) 2270-2281 [PubMed].
  21. Manderson G.A., Hardman M.J., Creamer L.K., Effect of heat treatment on conformation and aggregation of $\beta$-lactoglobulin A, B, and C, J. Agric. Food Chem. 46 (1998) 5052-5061 [CrossRef].
  22. Matsui Lee I.S., Suzuki M., Hayashi N., Hu J., Van Eldik L.J., Titani K., Nishikimi M., Copper-dependent formation of disulfide-linked dimer of S100B protein, Arch. Biochem. Biophys. 374 (2000) 137-141 [CrossRef] [PubMed].
  23. Pantaloni D., Structure et changements de conformation de la $\beta$-lactoglobuline en solution, Ph.D. Thesis, Université Paris-Orsay, 1965.
  24. Papiz M.Z., Sawyer L., Eliopoulos E.E., North A.C.T., Findlay J.B.C., Sivaprasadarao R., Jones T.A., Newcomer M.E., Kraulis P.J., The structure of $\beta$-lactoglobulin and its similarity to plasma retinol-binding protein, Nature 324 (1986) 383-385 [CrossRef] [PubMed].
  25. Qi X.L., Holt C., Mcnulty D., Clarke D.T., Brownlow S., Jones G.R., Effect of temperature on the secondary structure of $\beta$-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis, Biochem. J. 324 (1997) 341-346 [PubMed].
  26. Roefs S.P.F.M., de Kruif K.G., A model for the denaturation and aggregation of $\beta$-lactoglobulin, Eur. J. Biochem. 226 (1994) 883-889 [PubMed].
  27. Schokker E.P., Singh H., Pinder D.N., Norris G.E., Creamer L.K., Characterization of intermediates formed during heat-induced aggregation of $\beta$-lactoglobulin AB at neutral pH, Int. Dairy J. 9 (1999) 791-800 [CrossRef].