Free Access
Issue
Lait
Volume 81, Number 1-2, January-April 2001
10th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 151 - 159
DOI https://doi.org/10.1051/lait:2001119

References

1
Altschul S.F., Madden T.L., Schäeffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997) 3389-3402.
2
Anderson P.F., Molecular aspects of carbamoyl phosphate synthesis, in: Walsh P.J., Wright P. (Eds.), Nitrogen metabolism and excretion, CRC press Inc., Boca Raton, USA, 1995, pp. 33-49.
3
Bolotin A., Mauger S., Malarme K., Ehrlich S.D., Sokorin A., Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome, in: Konings W.N., Kuipers O.P., Huis in't Veld J.H.J. (Eds.), Lactic acid bacteria: genetics, metabolism and applications, Kluwer Academic Publishers, Dordecht, The Netherlands, 1999, pp. 27-76.
4
Baumberg S., Klingel U., Biosynthesis of arginine, proline, and related compounds, in: Sonensheim A.L., Hoch J.A., Losick R. (Eds.), Bacillus subtilis and other Gram-positive bacteria, American Society For Microbiology, Washington DC, USA, 1993, pp. 299-306.
5
Bouvier J., Patte J.-C., Stragier P., Multiple regulatory signals in the control region of the Escherichia coli carAB operon, Proc. Natl. Acad. Sci. USA 81 (1984) 4139-4143.
6
Bringel F., Carbamoylphosphate and natural auxotrophies in lactic acid bacteria, Lait 78 (1998) 31-37.
7
Bringel F., Frey L., Boivin S., Hubert J.-C., Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed, J. Bacteriol. 179 (1997) 2697-2706.
8
Cocaign-Bousquet M., Garrigues C., Novak L., Lindley N.D., Loubière P., Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis, J. Appl. Bacteriol. 79 (1995) 108-116.
9
Cunin R., Glansdorff N., Piérard A., Stalon V., Biosynthesis and metabolism of arginine in bacteria, Microbiol. Rev. 50 (1986) 314-352.
10
Czerwinski R.M., Mareya S.M., Raushel F.M., Regulatory changes in the control of carbamoyl phosphate synthetase induced by truncation and mutagenesis of the allosteric binding domain, Biochemistry 34 (1995) 13920-13927.
11
Davis R.H., Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae, Microbiol. Rev. 50 (1989) 280-313.
12a
Delannay S., Charlier D., Tricot C., Villeret V., Piérard A., Stalon V., Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways, J. Mol. Biol. 286 (1999) 1217-1228.
12b
Devereux J., Haeberli P., Smithies O., A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12 (1984) 387-395.
13
Dion M., Charlier D., Wang H., Gigot D., Savchenko A., Hallet J.-N., Glansdorff N., Sakanyan V., The highly thermostable arginine repressor of Bacillus stearothermophilus: gene cloning and repressor-operator interactions, Mol. Microbiol. 25 (1997) 385-398.
14
Elagöz A., Abdi A., Hubert J.-C., Kammerer B., Structure and organisation of the pyrimidine biosynthesis pathway genes in Lactobacillus plantarum: a PCR strategy for sequencing without cloning, Gene 182 (1996) 37-43.
15
Ghim S.-Y., Kim C.C., Bonner E.R., D'Elia J.N., Grabner G.K., Switzer R.L., The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5' leader, J. Bacteriol. 181 (1999) 1324-1329.
16
Huston J.Y., Dowing M., Pyrimidine biosynthesis in Lactobacillus leichmannii, J. Bacteriol 96 (1968) 1249-1254.
17
Jones M.E., Lipmann F., Chemical and enzymatic synthesis of carbamyl phosphate, Proc. Natl. Acad. Sci. USA 46 (1960) 1194-1205.
18
Kothe M., Eroglu B., Mazza H., Samudera H., Powers-Lee S.G., Novel mechanism for carbamoyl-phosphate synthetase: a nucleotide switch for functionally equivalent domains, Proc. Natl. Acad. Sci. USA 94 (1997) 12348-12353.
19
Kwon D.-H., Lu C.-D., Wathall D.A., Brown T.M., Houghton J.E., Abdelal A.T., Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutzeri: no untranslated region exists, J. Bacteriol. 176 (1994) 2532-2542.
20
Lawson F.S., Billowes F.M., Dillon J.-A.R., Organization of carbamoyl-phosphate synthase genes in Neisseria gonorrhoeae includes a large, variable intergenic sequence which is also present in other Neisseria species, Microbiology 141 (1995) 1183-1191.
21
Lawson F.S., Charlebois R.L., Dillon J.-A.R., Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life, Mol. Biol. Evol. 13 (1996) 970-977.
22
Li X., Weinstock G.M., Murray B.E., Generation of auxotrophic mutants of Enterococcus faecalis, J. Bacteriol. 177 (1995) 6866-6873.
23
Lu C.-D., Kwon D.-H., Abdelal A.T., Identification of greA encoding a transcriptional elongation factor as a member of the carA-orf-carB-greA operon in Pseudomonas aeruginosa PAO1, J. Bacteriol. 179 (1997) 3043-3046.
24
Maas W.K., The arginine repressor of Escherichia coli, Microbiol. Rev. 58 (1994) 631-640.
25
Marina A., Uriarte M., Barcelona B., Fresquet V., Cervera J., Rubio V., Carbamate kinase from Enterococcus faecalis and Enterococcus faecium. Cloning of the genes, studies of the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-L-glutamate kinase, Eur. J. Biochem. 253 (1998) 280-291.
26
Martinussen J., Hammer K., The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically, J. Bacteriol. 180 (1998) 4380-4386.
27
Murray B.E., Singh K.V., Ross R.P., Heath J.D., Dunny G.M., Weinstock G.M., Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function, J. Bacteriol. 175 (1993) 5216-5223.
28
Nicoloff H., Hubert J.-C., Bringel F., in Lactobacillus plantarum, carbamoylphosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS, J. Bacteriol. 182 (2000) 3416-3422.
29
Nyunoya H., Lusty C.J., The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthase, Proc. Natl. Acad. Sci. USA 80 (1983) 4629-4633.
30
Paulus T.J., Switzer R.L., Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis, J. Bacteriol. 137 (1979) 82-91.
31
Quinn C.L., Stephenson B.T., Switzer R.L., Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon, J. Biol. Chem. 266 (1991) 9113-9127.
32
Souciet J.L., Nagy M., LeGouar M., Lacroute F., Potier S., Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoyl phosphate synthetase - aspartate transcarbamylase complex, Gene 79 (1989) 59-70.
33
Thoden J.B., Raushel F.M., Benning M.M., Rayment I., Holden H.M., The structure of carbamoyl phosphate synthetase determined to 2,1 Åresolution, Acta Cryst. D 55 (1999) 8-24.
34
Thompson J.D., Gibson T.J., Plewniac F., Jeanmougin F., Higgins D.G., The ClustalX windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools, Nucl. Acids Res. 25 (1997) 4876-4882.
35
Turner R.J., Lu Y., Switzer R.L., Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism, J. Bacteriol. 176 (1994) 3708-3722.
36
van den Hoff M.J.B., Jonker A., Beintema J.J., Lamers W.H., Evolutionary relationship of the carbamoylphosphate synthetase genes, J. Mol. Evol. 41 (1995) 813-832.
37
Yang H., Park S.-D., Nolan W.G., Lu C.-D., Abdelal A.T., Cloning and characterization of the arginine-specific carbamoyl-phosphate synthetase from Bacillus stearothermophilus, Eur. J. Biochem. 249 (1997) 443-449.

Abstract

Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.