Free Access
Issue
Lait
Volume 81, Number 1-2, January-April 2001
10th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 161 - 171
DOI https://doi.org/10.1051/lait:2001120

References

1
Aukrust T., Nes I.F., Transformation of Lactobacillus plantarum with the plasmid pTV1 by electroporation, FEMS Microbiol. Lett. 52 (1988) 127-132.
2
Barthelmebs L., Diviès C., Cavin J.-F., Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism, Appl. Environ. Microbiol. 66 (2000) 3368-3375.
3
Bertani G., Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol. 60 (1951) 293-300.
4
Borneman W.S., Akin D.E., van Eseltine W.P., Effect of phenolic monomers on ruminal bacteria, Appl. Environ. Microbiol. 52 (1986) 1331-1339.
5
Cavin J.-F., Andioc V., Etiévant P.X., Diviès C., Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids, Am. J. Enol. Vitic. 44 (1993) 76-80.
6
Cavin J.-F., Barthelmebs L., Diviès C., Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: Gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification and characterization, Appl. Environ. Microbiol. 63 (1997) 1939-1944.
7
Cavin J.-F., Barthelmebs L., Guzzo J., van Beeumen J., Samyn B., Travers J.-F., Diviès C., Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum, FEMS Microbiol. Lett. 147 (1997) 291-295.
8
Cavin J.-F., Dartois V., Diviès C., Gene cloning, transcriptional analysis, purification and characterization of phenolic acid decarboxylase from Bacillus subtilis, Appl. Environ. Microb. 64 (1998) 1466-1471.
9
Christov L.P., Prior B.A., Esterases of xylan-degrading microorganisms: production, properties and significance, Enzyme Microb. Technol. 15 (1993) 460-475.
10
Clausen M., Lamb C.J., Megnet R., Doerner P.W., PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae, Gene 142 (1994) 107-112.
11
de Man P.J., Rogosa M., Sharpe M., A medium for the cultivation of Lactobacilli, J. Appl. Bacteriol. 23 (1960) 130-135.
12
de Vries R.P., Michelsen B., Poulsen C.H., Kroon P.A., van den Heuvel R.H.H., Faulds C.B., Williamson G., van den Hombergh J.P.T.W., Visser J., The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides, Appl. Environ. Microbiol. 63 (1997) 4638-4644.
13
Degrassi G., Polverino de Laureto P., Bruschi C.V., Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus, Appl. Environ. Microbiol. 61 (1995) 326-332.
14
Dower W.J., Miller F., Ragsdale C.W., High efficient transformation of Escherichia coli by high voltage electroporation, Nucl. Acids Res. 16 (1988) 6127-6145.
15
Edlin D.A.N., Narbad A., Gasson M.J., Dickinson J.R., Lloyd D., Purification and characterization of hydroxycinnamate decarboxylase from Brettanomyces anomalus, Enzyme Microbiol. Technol. 22 (1998) 232-239.
16
Etiévant P.X., Issanchou S.N., Marie S., Ducruet V., Flanzy C., Sensory impact of volatile phenols on red wine aroma: Influence of carbonic maceration and time of storage, Sci. Aliments 9 (1989) 19-33.
17
Gasson M.J., Kitamura Y., McLauchlan W.R., Narbad A., Parr A.J., Parsons E.L.H., Payne J., Rhodes M.J.C., Walton N.J., Metabolism of ferulic acid to vanillin, J. Biol. Chem. 273 (1998) 4163-4170.
18
Goodey A.R., Tubb R.S., Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids, J. Gen. Microbiol. 128 (1982) 2615-2620.
19
Huang Z., Dostal L., Rosazza J.P.N., Microbial transformation of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens, Appl. Environ. Microbiol. 59 (1993) 2244-2250.
20
Lee Y.W., Jin S., Sim W.S., Nester E.W., Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 92 (1995) 12245-12249.
21
Lesage-Meessen L., Delattre M., Haon M., Thibault J.F., Ceccaldi B.C., Brunerie P., Asther M., A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus, J. Biotechnol. 50 (1996) 107-113.
22
McSweeney C., Dulieu A., Webb R.I., del Dot T., Blackall L.L., Isolation and characterization of a Clostridium sp. with cinnamoyl esterase activity and unusual cell envelope ultrastructure, Arch. Microbiol. 172 (1999) 139-149.
23
Posno M.R., Leer J., van Luik N., van Giezen M.J.F., Heuvelmans P.T.H.M., Lokman B.C., Pouwels P.H., Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors, Appl. Environ. Microbiol. 57 (1991) 1822-1828.
24
Priefert H., Rabenhorst J., Steinbuchel A., Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate, J. Bacteriol. 179 (1997) 2595-2607.
25
Ramos-Nino M.E., Clifford M.N., Adams M.R., Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes, J. Appl. Bacteriol. 80 (1996) 303-310.
26
Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor, NY, USA, 1989.
27
Sanger F., Nicklen S., Coulson A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA. 74 (1977) 5463-5467.
28
Segura A., Bünz P.V., D'Argenio D.A., Ornston L.N., Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter, J. Bacteriol. 181 (1999) 3494-3504.
29
Thurston P.A., Tubb R.S., Screening yeast strains for their ability to produce phenolic off-flavours: A simple method for determining phenols in wort and beer, J. Inst. Brew. 87 (1981) 177-179.
30
Venturi V., Zennaro F., Degrassi G., Okeke B.C., Bruschi C.V., Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358, Microbiology 144 (1998) 965-973.
31
Whiting G.C., Carr J.G., Metabolism of cinnamic acid and hydroxy-cinnamic acids by Lactobacillus pastorianus var. quinicus, Nature 184 (1959) 1427-1428.
32
Yamane K., Kumano M., Kurita K., The 25 degrees-36 degrees region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes, Microbiology 142 (1996) 3047-3056.
33
Zago A., Degrassi G., Bruschi C.V., Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid degradation, Appl. Environ. Microbiol. 61 (1995) 4484-4486.
34
Zaldivar J., Ingram L.O., Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01, Biotechnol. Bioeng. 66 (1999) 203-210.

Abstract

Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.