Free Access
Volume 80, Number 1, January-February 2000
New applications of membrane technology in the dairy industry
Page(s) 187 - 195


Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M., Identification of the bactericidal domain of lactoferrin, Biochim. Biophys. Acta 1121 (1992) 130-136.
Boman H.G., Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol. 13 (1995) 61-92.
Chiu C.K., Etzel M.R., Fractionation of lactoperoxidase and lactoferrin from bovine whey using a cation exchange membrane, J. Food Sci. 62 (1997) 996-1000.
Dionysius D.A., Milne J.M., Antibacterial peptides of bovine lactoferrin: purification and characterization, J. Dairy Sci. 80 (1997) 667-674.
Hancock R.E.W., Lehrer R., Cationic peptides: a new source of antibiotics, Trends Biotechnol. 16 (1998) 82-88.
Hoek K.S., Milne J.M., Grieve P.A., Dionysius D.A., Smith R., Antibacterial activity of bovine lactoferrin-derived peptides, Antimicrob. Agents Chemother. 41 (1997) 54-59.
Kuipers O.P., Beerthuyzen M.M., Siezen R.J., De Vos W.M., Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity, Eur. J. Biochem. 216 (1993) 281-291.
Le Provost F., Nocart M., Guérin G., Martin P., Characterization of the goat lactoferrin cDNA: Assignment of the relevant locus to bovine U12 synteny group, Biochem. Biophys. Res. Commun. 203 (1994) 1324-1332.
Lee K.H., Hong S.Y., Oh J.E., Kwon M.Y., Yoon J.H., Lee J.H., Lee B.L., Moon H.M., Identification and characterization of the antimicrobial peptide corresponding to C-terminal $\beta$-sheet domain of tenecin 1, an antibacterial protein of larvae of Tenebrio molitor, Biochem. J. 334 (1998) 99-105.
Moore S.A., Anderson B.F., Groom C.R., Haridas M., Baker E.N., Three-dimensional structure of diferric bovine lactoferrin at 2.8 Åresolution, J. Mol. Biol. 274 (1997) 222-236.
Ooi Ch.E., Weiss J., Doerfler M.E., Elsbach P., Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/permeability-increasing protein of human neutrophils, J. Exp. Med. 174 (1991) 649-655.
Recio I., Visser S., Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane, J. Chromatogr. A 831 (1999) 191-201.
Recio I., Visser S., Identification of two distinct antibacterial domains within the sequence of bovine $\alpha_{\rm s2}$-casein, Biochim. Biophys. Acta 1428 (1999) 314-326.
van der Meer J.R., Polman J., Beerthuyzen M.M., Siezen R.J., Kuipers O.P., De Vos W.M., Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis, J. Bacteriol. 175 (1993) 2578-2588.
Yamauchi K., Tomita M., Giehl T.J., Ellison III R.T., Antibacterial activity of lactoferrin and pepsin-derived lactoferrin peptide fragment, Infect. Immun. 61 (1993) 719-728.
Wakabayashi H., Bellamy W., Takase M., Tomita M., Inactivation of Listeria monocytogenes by lactoferricin, a potent antimicrobial peptide derived from cow's milk, J. Food Protect. 55 (1992) 238-240.


Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.