Free Access
Volume 87, Number 4-5, July-October 2007
27th IDF World Dairy Summit and Congress
Page(s) 301 - 315
Published online 26 October 2007
References of  Lait 87 (2007) 301-315
  1. Aymard P., Gimel J.C., Nicolai T., Durand D., Experimental evidence for a two-step process in the aggregation of $\beta $-lactoglobulin at pH 7, J. Chem. Phys. Phys. Chem. Bio. 93 (1996) 987-997.
  2. Aymard P., Durand D., Nicolai T., Gimel J.C., Fractality of globular protein aggregates: From the molecular to the microscopic level, Fractals 5 (1997) 23-43 [CrossRef] [MathSciNet].
  3. Beyer H.J., Kessler H.G., Bestimmung des thermischen Denaturierungverhaltens von Molkenproteinen mittels HPLC., GIT Suppl. Lebensm. 2 (1989) 22-26.
  4. Casal H.L., Kohler U., Mantsch H.H., Structural and conformational-changes of $\beta $-Lactoglobulin-B - An infrared spectroscopic study of the effect of pH and temperature, Biochim. Biophys. Acta 957 (1988) 11-20 [PubMed].
  5. Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233-236 [CrossRef].
  6. Croguennec T., Bouhallab S., Mollé D., O'Kennedy B.T., Mehra R., Stable monomeric intermediate with exposed Cys-119 is formed during heat denaturation of $\beta $-lactoglobulin, Biochem. Biophys. Res. Comm. 301 (2003) 465-471 [CrossRef].
  7. Dannenberg F., Zur Reaktionskinetik der Molkenproteindenaturierung und deren technologiescher Bedeutung, Dissertation Technical University of Munich, 1986.
  8. Dannenberg F., Kessler H.G., Effect of denaturation of $\beta $-lactoglobulin on texture properties of set-style nonfat yogurt. 1. Syneresis, Milchwissenschaft 43 (1988) 632-635.
  9. Dannenberg F., Kessler H.G., Effect of denaturation of $\beta $-lactoglobulin on texture properties of set-style nonfat yogurt. 2. Firmness and flow properties, Milchwissenschaft 43 (1988) 700-704.
  10. deWit J.N., Klarenbeek G., A differential scanning calorimetric study of the thermal-behavior of bovine $\beta $-lactoglobulin at temperatures up to 160 °C, J. Dairy Res. 48 (1981) 293-302.
  11. deWit J.N., Klarenbeek G., Effect of various heat treatments on structure and solubility of whey proteins, J. Dairy Sci. 67 (1984) 2701-2710.
  12. Dong A., Matsuura J., Allison S.D., Chrisman E., Manning M.C., Carpenter J.F., Infrared and circular dichroism spectroscopic characterization of structural differences between $\beta $-lactoglobulin A and B, Biochemistry 35 (1996) 1450-1457 [CrossRef] [PubMed].
  13. Elofsson U.M., Dejmek P., Paulsson M.A., Heat-induced aggregation of $\beta $-lactoglobulin studied by dynamic light scattering, Int. Dairy J. 6 (1996) 343-357 [CrossRef].
  14. Griffin W.G., Griffin M.C.A., Time-dependent polydispersity of growing colloidal aggregates - predictions from dynamic light-scattering theory, J. Chem. Soc.-Faraday Trans. 89 (1993) 2879-2889 [CrossRef].
  15. Griffin W.G., Griffin M.C.A., Martin S.R., Price J., Molecular-basis of thermal aggregation of bovine $\beta $-lactoglobulin-A, J. Chem. Soc.-Faraday Trans. 89 (1993) 3395-3406 [CrossRef].
  16. Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of $\beta $-lactoglobulin: Role of the free thiol group and disulfide bonds, J. Agric. Food Chem. 45 (1997) 2942-2948 [CrossRef].
  17. Hoffmann M.A.M., van Mil P.J.J.M., Heat-induced aggregation of $\beta $-lactoglobulin as a function of pH, J. Agric. Food Chem. 47 (1999) 1898-1905 [CrossRef] [PubMed].
  18. Hoffmann M.A.M., van Miltenburg J.C., van Mil P.J.J.M., The suitability of scanning calorimetry to investigate slow irreversible protein denaturation, Thermochim. Acta 306 (1997) 45-49 [CrossRef].
  19. Hoffmann M.A.M., van Miltenburg J.C., van der Eerden J.P., van Mil P.J.J.M., de Kruif C.G., Isothermal and scanning calorimetry measurements on $\beta $-lactoglobulin, J. Phys. Chem. B 101 (1997) 6988-6994 [CrossRef].
  20. Iametti S., De Gregori B., Vecchio G., Bonomi F., Modifications occur at different structural levels during the heat denaturation of $\beta $-lactoglobulin, Eur. J. Biochem. 237 (1996) 106-112 [PubMed].
  21. Maubois J.L., Fauquant J., Famelart M.H., Caussin F., Milk microfiltrate, a convenient starting material for fractionation of whey proteins and derivatives, in: The Importance of Whey and Whey Components in Food and Nutrition, Proceedings of the 3rd International Whey Conference, Munich, B. Behrs's Verlag GmvH & Co, Hamburg, Germany, 2001, pp. 59-72.
  22. Ngarize S., Adams A., Howell N.K., Studies on egg albumen and whey protein interactions by FT-Raman spectroscopy and rheology, Food Hydrocoll. 18 (2004) 49-59 [CrossRef].
  23. Pearce R.J., Food Functionality - Success or failure for dairy based ingredients, Aust. J. Dairy Technol. 50 (1995) 15-23.
  24. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D., Meng E.C., Ferrin T.E., UCSF chimera - A visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605-1612 [PubMed].
  25. Qi X.L., Brownlow S., Holt C., Sellers P., Thermal-denaturation of $\beta $-lactoglobulin - Effect of protein-concentration at pH-6.75 and pH-8.05, Biochim. Biophys. Acta -Prot. Struct. 1248 (1995) 43-49.
  26. Qi X.L., Holt C., McNulty D., Clarke D.T., Brownlow S., Jones G.R., Effect of temperature on the secondary structure of $\beta $-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis, Biochem. J. 324 (1997) 341-346 [PubMed].
  27. Roefs S.P.F.M., Dekruif K.G., A model for the denaturation and aggregation of $\beta $-lactoglobulin, Eur. J. Biochem. 226 (1994) 883-889 [PubMed].
  28. Sawyer L., $\beta $-lactoglobulin, in: Fox P.F., McSweeney P.L.H. (Eds.), Advanced Dairy Chemistry: Proteins, 3rd edn., Kluwer Academic/Plenum Publishers, New York, USA, 2003, pp. 319-363.
  29. Schokker E.P., Singh H., Pinder D.N., Norris G.E., Creamer L.K., Characterization of intermediates formed during heat-induced aggregation of $\beta $-lactoglobulin AB at neutral pH, Int. Dairy J. 9 (1999) 791-800 [CrossRef].
  30. Schokker E.P., Singh H., Creamer L.K., Heat-induced aggregation of $\beta $-lactoglobulin A and B with $\alpha$-lactalbumin, Int. Dairy J. 10 (2000) 843-853 [CrossRef].
  31. Smoluchowski M., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem. 92 (1918) 129-168.
  32. Spiegel T., Whey protein aggregation under shear conditions - effects of lactose and heating temperature on aggregate size and structure, Int. J. Food Sci. Technol. 34 (1999) 523-531.
  33. Spiegel T., Huss M., Whey protein aggregation under shear conditions - effects of pH- value and removal of calcium, Int. J. Food Sci. Technol. 37 (2002) 559-568.
  34. Tolkach A., Kulozik U., Effect of pH and temperature on the reaction kinetic parameters of the thermal denaturation of $\beta $-lactoglobulin, Milchwissenschaft 60 (2005) 249-252.
  35. Tolkach A., Steinle S., Kulozik U., Optimization of thermal pretreatment conditions for the separation of native $\alpha$- lactalbumin from whey protein concentrates by means of selective denaturation of $\beta $-lactoglobulin, J. Food Sci. 70 (2005) E557-E566.
  36. Verheul M., Roefs S.P.F.M., de Kruif K.G., Kinetics of heat-induced aggregation of beta-lactoglobulin, J. Agric. Food Chem. 46 (1998) 896-903 [CrossRef].
  37. Walstra P., Wouters J.T.M., Geurts T.J., Dairy Science and Technology, CRC Taylor & Francis Group, Boca Raton, USA, 2005.
  38. Wu S.Y., Perez M.D., Puyol P., Sawyer L., $\beta $-lactoglobulin binds palmitate within its central cavity, J. Biol. Chem. 274 (1999) 170-174 [CrossRef] [PubMed].
  39. Ye A.Q., Singh H., Oldfield D.J., Anema S., Kinetics of heat-induced association of $\beta $-lactoglobulin and $\alpha$-lactalbumin with milk fat globule membrane in whole milk, Int. Dairy J. 14 (2004) 389-398 [CrossRef].