Free Access
Issue
Lait
Volume 84, Number 1-2, January-April 2004
12th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 77 - 85
DOI https://doi.org/10.1051/lait:2003043
Published online 12 December 2003
References of  Lait 84 (2004) 77-85
  1. Chang S.K., Hassan H.M., Characterization of superoxide dismutase in Streptococcus thermophilus, Appl. Environ. Microbiol. 63 (1997) 3732-3735 [PubMed].
  2. Chaussee M.S., Watson R.O., Smoot J.C., Musser J.M., Identification of Rgg-regulated exoproteins of Streptococcus pyogenes, Infect. Immun. 69 (2001) 822-831 [CrossRef] [PubMed].
  3. Chaussee M.S., Sylva G.L., Sturdevant D.E., Smoot L.M., Graham M.R., Watson R.O., Musser J.M., Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes, Infect. Immun. 70 (2002) 762-770 [CrossRef] [PubMed].
  4. Chia J.S., Lee Y.Y., Huang P.T., Chen J.Y., Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR, Infect. Immun. 69 (2001) 2493-2501 [CrossRef] [PubMed].
  5. Duwat P., Ehrlich S.D., Gruss A., Effects of metabolic flux on stress response pathways in Lactococcus lactis, Mol. Microbiol. 31 (1999) 845-858 [CrossRef] [PubMed].
  6. Duwat P., Cesselin B., Sourice S., Gruss A., Lactococcus lactis, a bacterial model for stress responses and survival, Int. J. Food Microbiol. 55 (2000) 83-86 [CrossRef] [PubMed].
  7. Gibson C.M., Mallett T.C., Claiborne A., Caparon M.G., Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes, J. Bacteriol. 182 (2000) 448-455 [CrossRef] [PubMed].
  8. Helmann J.D., Wu M.F., Gaballa A., Kobel P.A., Morshedi M.M., Fawcett P., Paddon C., The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors, J. Bacteriol. 185 (2003) 243-253 [CrossRef] [PubMed].
  9. King K.Y., Horenstein J.A., Caparon M.G., Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes, J. Bacteriol. 182 (2000) 5290-5299 [CrossRef] [PubMed].
  10. Larsen B., Wills N.M., Nelson C., Atkins J.F., Gesteland R.F., Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting, Proc. Natl. Acad. Sci. USA 97 (2000) 1683-1688 [CrossRef] [PubMed].
  11. Maguin E., Prevost H., Ehrlich S.D., Gruss A., Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria, J. Bacteriol. 178 (1996) 931-935 [PubMed].
  12. Paget M.S., Kang J.G., Roe J.H., Buttner M.J., sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2), Embo J. 17 (1998) 5776-5782 [CrossRef] [PubMed].
  13. Paget M.S., Molle V., Cohen G., Aharonowitz Y., Buttner M.J., Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon, Mol. Microbiol. 42 (2001) 1007-1020 [CrossRef] [PubMed].
  14. Poole L.B., Higuchi M., Shimada M., Calzi M.L., Kamio Y., Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein, Free Radical Biol. Med. 28 (2000) 108-120 [CrossRef].
  15. Ricci S., Janulczyk R., Bjorck L., The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes, Infect. Immun. 70 (2002) 4968-4976 [CrossRef] [PubMed].
  16. Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a Laboratory Manual, Cold Spring Harbor Laboratory, New York, USA, 1989.
  17. Storz G., Zheng M., Oxidative stress, in: Storz G., Henge-Aronis R. (Eds.), Bacterial stress responses, ASM press, Washington D.C., USA, 2000, pp. 47-59.
  18. Sulavik M.C., Clewell D.B., Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene, J. Bacteriol. 178 (1996) 5826-5830 [PubMed].
  19. Sulavik M.C., Tardif G., Clewell D.B., Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis, J. Bacteriol. 174 (1992) 3577-3586 [PubMed].
  20. Thibessard A., Défense de Streptococcus thermophilus contre le stress oxydatif : existence d'un système de réponse, construction et sélection de mutants et identification de gènes impliqués, Ph.D. thesis, Université Henri Poincaré, Nancy, France, 2002.
  21. Thibessard A., Leblond-Bourget N., Fernandez A., Gintz B., Decaris B., Response of Streptococcus thermophilus CNRZ368 and its colonial variants to oxidative stress: evidence for an inducible defence system, Lait 81 (2001) 311-316 [EDP Sciences] [CrossRef].
  22. Thibessard A., Fernandez A., Gintz B., Decaris B., Leblond-Bourget N., The proteins RodA and PBP2b are implicated in the control of the ovoid-shape of Streptococcus thermophilus CNRZ368 and play a role in cells defence against superoxide radicals, Sci. Aliments 22 (2002) 75-85.
  23. Thibessard A., Fernandez A., Gintz B., Decaris B., Leblond-Bourget N., Transposition of pGh9:ISS1 is random and efficient in Streptococcus thermophilus CNRZ368, Can. J. Microbiol. 48 (2002) 473-478 [CrossRef] [PubMed].
  24. Wagner L.A., Weiss R.B., Driscoll R., Dunn D.S., Gesteland R.F., Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli, Nucl. Acids Res. 18 (1990) 3529-3535.
  25. Yamamoto Y., Higuchi M., Poole L.B., Kamio Y., Role of the dpr product in oxygen tolerance in Streptococcus mutans, J. Bacteriol. 182 (2000) 3740-3747 [CrossRef] [PubMed].