Free Access
Issue
Lait
Volume 81, Number 1-2, January-April 2001
10th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 83 - 90
DOI https://doi.org/10.1051/lait:2001114

References

1
Braquart P., Lorient D., Effet des acides aminés sur la croissance de Streptococcus thermophilus, Milchwissenschaft 32 (1977) 221-224.
2
Braquart P., Lorient D., Alais C., Effet des acides aminés sur la croissance de Streptococcus thermophilus. II. Étude sur 5 souches, Milchwissenschaft 33 (1978) 341-344.
3
Cavin J.F., Dartois V., Labarre C., Diviès C., Cloning of branched-chain amino acid biosynthesis genes and assays of a-acetolactate synthase activities in Leuconostoc mesenteroides subsp. cremoris, Res. Microbiol. 150 (1999) 189-198.
4
Cogain-Bousquet M., Garrigues C., Novak L., Lindley N. D., Loubière P., Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis, J. Appl. Bacteriol. 79 (1995) 108-116.
5
Deguchi Y., Morishita T., Nutritional requirements in multiple auxotrophic lactic acid bacteria: genetic lesions affecting amino acid biosynthetic pathways in Lactococcus lactis, Enterococcus faecium, and Pediococcus acidilactici, Biosci. Biotechnol. Biochem. 56 (1992) 913-918.
6
Desmazeaud M., L'état des connaissances en matière de nutrition des bactéries lactiques, Lait 63 (1983) 267-316.
7
Devereux J., Haeberli P., Smithies O., A comprehensive set of sequence analysis programs for VAX, Nucl. Acids Res. 12 (1984) 387-395.
8
Garault P., Letort C., Juillard V., Monnet V., Branched-chain amino acid biosynthesis is essential for Streptococcus thermophilus optimal growth in milk, Appl. Environ. Microbiol. 66 (2000) 5128-5133.
9
Godon J.J., Chopin M.C., Ehrlich S.D., Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis, J. Bacteriol. 174 (1992) 6580-6589.
10
Godon J.J., Delorme C., Bardowski J., Chopin M.C., Ehrlich S.D., Renault P., Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis, J. Bacteriol. 175 (1993) 4383-4390.
11
Goupil-Feuillerat N., Cogain-Bousquet M., Godon J.J., Ehrlich S.D., Renault P., Dual role of a-acetolactate decarboxylase in L. lactis subsp. lactis, J. Bacteriol. 179 (1997) 6285-6293.
12
Huggins A.M., Sandine W.E., Differenciation of fast and slow milk coagulating isolates in strains of streptococci, J. Dairy Sci. 67 (1984) 1674-1679.
13
Keilhauer C., Eggleling L., Sahn H., Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon, J. Bacteriol. 175 (1993) 5595-5603.
14
Maguin E., Prévost H., Ehrlich S.D., Gruss A., Efficient insertional mutagenesis in lactococci and other gram-positive bacteria, J. Bacteriol. 178 (1996) 931-935.
15
Mierau I., Kunji E.R.S., Leenhouts K.J., Hellendorn M.A., Haandrikman A.J., Poolman B., Konings W.N., Venema G., Kok J., Multiple peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk, J. Bacteriol. 178 (1996) 2794-2803.
16
Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T., Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways, J. Bacteriol. 148 (1981) 64-71.
17
Neviani E., Giraffa G., Brizzi A., Carminati D., Amino acids requirements and peptidase activities of Streptococcus salivarius subsp. thermophilus, J. Appl. Bacteriol. 79 (1995) 302-307.
18
Nilsson D., Kilstrup M., Cloning and expression of the Lactococcus lactis purDEK genes, required for growth in milk, Appl. Environ. Microbiol. 64 (1998) 4321-4327.
19
Poolman B., Konings W.N., Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport, J. Bacteriol. 170 (1988) 700-707.
20
Rallu F., Gruss A., Maguin E., Lactococcus lactis and stress, Antonie van Leeuwenhoek 70 (1996) 147-159.
21
Renna M.C., Najimudin N., Winik L.R., Zahler S.A., Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin, J. Bacteriol. 175 (1993) 3863-3875.
22
Shahbal S., Hemme D., Desmazeaud M., High cell wall-associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk, Lait 71 (1991) 351-357.
23
Thomas T.D., Mills O.E., Proteolytic enzymes of starter bacteria, Neth. Milk Dairy J. 35 (1981) 255-273.
24
Thomas T.D., Turner K.W., Preparation of skim milk to allow harvesting of starter cells from milk cultures, N. Z. J. Dairy Sci. Technol. 12 (1977) 15-21.
25
Tsau J.L., Guffanti A.A., Montville T.J., Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum, Appl. Environ. Microbiol. 58 (1992) 891-894.
26
von Wright A., Tynkkynen S., Souminen M., Cloning of a Streptococcus lactis subsp. lactis chromosomal fragment associated with the ability to grow in milk, Appl. Environ. Microbiol. 53 (1987) 1584-1588.
27
Wang H., Yu W., Coolbear T., O'Sullivan D., McKay L., A deficiency in aspartate biosynthesis in Lactococcus lactis subsp. lactis C2 causes slow milk coagulation, Appl. Environ. Microbiol. 64 (1998) 1673-1679.
28
Wek R.C., Hatfield G.W., Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12, J. Biol. Chem. 261 (1986) 2441-2550.

Abstract

Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.