Free Access
Volume 84, Number 1-2, January-April 2004
12th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 49 - 59
References of  Lait 84 (2004) 49-59
  1. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucl. Acids Res. 25 (1997) 3389-3402 [CrossRef].
  2. Amanatidou A., Smid E.J., Gorris L.G., Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated micro-organisms, J. Appl. Microbiol. 86 (1999) 429-438 [CrossRef] [PubMed].
  3. Bolmstrom A., Karlsson A., Influence of CO2 incubation on quinolone activity against Streptococcus pneumoniae and Haemophilus influenzae, Diagn. Microbiol. Infect. Dis. 42 (2002) 65-69 [CrossRef] [PubMed].
  4. Bringel F., Hubert J.C., Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus and L. casei: prevalence of CO2 dependent auxotrophs and characterization of deficient arg genes in L. plantarum, Appl. Environ. Microbiol. 69 (2003) 2674-2683 [CrossRef] [PubMed].
  5. Bringel F., Frey L., Boivin S., Hubert J.C., Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed, J. Bacteriol. 179 (1997) 2697-2706 [PubMed].
  6. Dixon N.M., Kell D.B., The inhibition by CO2 of the growth and metabolism of micro-organisms, J. Appl. Bacteriol. 67 (1989) 109-136 [PubMed].
  7. Groeneveld A.B., Kolkman J.J., Splanchnic tonometry: a review of physiology, methodology, and clinical applications, J. Crit. Care 9 (1994) 198-210 [PubMed].
  8. Guilloton M.B., Korte J.J., Lamblin A.F., Fuchs J.A., Anderson P.M., Carbonic anhydrase in Escherichia coli. A product of the cyn operon, J. Biol. Chem. 267 (1992) 3731-3734 [PubMed].
  9. Guilloton M.B., Lamblin A.F., Kozliak E.I., Gerami-Nejad M., Tu C., Silverman D., Anderson P.M., Fuchs J.A., A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli, J. Bacteriol. 175 (1993) 1443-1451 [PubMed].
  10. Hamada Y., Tanaka T., Dynamics of carbon dioxide in soil profiles based on long-term field observation, Hydrol. Process 15 (2001) 1829-1845 [CrossRef].
  11. Higuchi T., Hayashi H., Abe K., Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain, J. Bacteriol. 179 (1997) 3362-3364 [PubMed].
  12. Hofstad T., The classification and identification of the anaerobic Gram-positive cocci, Scand. J. Infect. Dis. Suppl. 46 (1985) 14-17 [PubMed].
  13. Kandler O., Weiss N., Regular, nonsporing Gram-positive rods, in: Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. (Eds.), Bergey's manual of systematic bacteriology, Vol. 2, Williams and Wilkins, Baltimore, MD, USA, 1986, pp. 1208-1260.
  14. Kasting J.F., Earth's early atmosphere, Science 259 (1993) 920-926.
  15. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O.P., Leer R., Tarchini R., Peters S.A., Sandbrink H.M., Fiers M.W., Stiekema W., Lankhorst R.M., Bron P.A., Hoffer S.M., Groot M.N., Kerkhoven R., de Vries M., Ursing B., de Vos W.M., Siezen R.J., Complete genome sequence of Lactobacillus plantarum WCFS1, Proc. Natl. Acad. Sci. USA 100 (2003) 1990-1995 [CrossRef] [PubMed].
  16. Koehler T.M., Bacillus anthracis genetics and virulence gene regulation, Curr. Top. Microbiol. Immunol. 271 (2002) 143-164 [PubMed].
  17. Kofoid E., Rappleye C., Stojiljkovic I., Roth J., The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins, J. Bacteriol. 181 (1999) 5317-5329 [PubMed].
  18. Kolkman J.J., Otte J.A., Groeneveld A.B., Gastrointestinal luminal PCO2 tonometry: an update on physiology, methodology and clinical applications, Brit. J. Anaesth. 84 (2000) 74-86.
  19. Konings W.N., The cell membrane and the struggle for life of lactic acid bacteria, Antonie Van Leeuwenhoek 82 (2002) 3-27 [CrossRef] [PubMed].
  20. Konings W.N., Lolkema J.S., Bolhuis H., van Veen H.W., Poolman B., Driessen A.J., The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance, Antonie Van Leeuwenhoek 71 (1997) 117-128 [CrossRef] [PubMed].
  21. Kozliak E.I., Fuchs J.A., Guilloton M.B., Anderson P.M., Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate, J. Bacteriol. 177 (1995) 3213-3219 [PubMed].
  22. Krebs H.A., Carbon dioxide assimilation in heterotrophic organisms, Nature 147 (1941) 560-563.
  23. Kusian B., Bowien B., Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria, FEMS Microbiol. Rev. 21 (1997) 135-155 [CrossRef] [PubMed].
  24. Lascelles J., Cross M.J., Woods D.D., The folic acid and serine nutrition of Leuconostoc mesenteroides P60 (Streptococcus equinus P60), J. Gen. Microbiol. 10 (1954) 267-284 [PubMed].
  25. Lyman C.M., Moseley O., Wood S., Butler B., Hale F., Some chemical factors which influence the amino acid requirements of the lactic acid bacteria, J. Biol. Chem. 167 (1947) 177-187.
  26. Masson A., Kammerer B., Hubert J.C., Selection and biochemical studies of pyrimidine-requiring mutants of Lactobacillus plantarum, J. Appl. Bacteriol. 77 (1994) 88-95.
  27. Molenaar D., Bosscher J.S., ten Brink B., Driessen A.J., Konings W.N., Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri, J. Bacteriol. 175 (1993) 2864-2870 [PubMed].
  28. Neidhardt F.C., Bloch P.L., Smith D.F., Culture medium for enterobacteria, J. Bacteriol. 119 (1974) 736-747 [PubMed].
  29. Nicoloff H., Hubert J.C., Bringel F., In Lactobacillus plantarum, carbamoyl phosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS, J. Bacteriol. 182 (2000) 3416-3422 [CrossRef] [PubMed].
  30. Nicoloff H., Hubert J.C., Bringel F., Carbamoyl-phosphate synthetase (CPS) in lactic acid bacteria and other Gram-positive bacteria, Lait 81 (2001) 151-159 [EDP Sciences] [CrossRef].
  31. Omata T., Gohta S., Takahashi Y., Harano Y., Maeda S., Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria, J. Bacteriol. 183 (2001) 1891-1898 [CrossRef] [PubMed].
  32. Repaske R., Clayton M.A., Control of Escherichia coli growth by CO2, J. Bacteriol. 135 (1978) 1162-1164 [PubMed].
  33. Repaske R., Ambrose C.A., Repaske A.C., De Lacy M.L., Bicarbonate requirement for elimination of the lag period of Hydrogenomonas eutropha, J. Bacteriol. 107 (1971) 712-717 [PubMed].
  34. Repaske R., Repaske A.C., Mayer R.D., Carbon dioxide control of lag period and growth of Streptococcus sanguis, J. Bacteriol. 117 (1974) 652-659 [PubMed].
  35. Schumpe A., Quicker G., Deckwer W.D., Gas solubilities in microbial culture media, Adv. Biochem. Eng. 24 (1982) 1-38.
  36. Sheppard S.K., Lloyd D., Direct mass spectrometric measurement of gases in soil monoliths, J. Microbiol. Methods 50 (2002) 175-188 [CrossRef] [PubMed].
  37. Shively J.M., van Keulen G., Meijer W.G., Something from almost nothing: carbon dioxide fixation in chemoautotrophs, Annu. Rev. Microbiol. 52 (1998) 191-230 [CrossRef] [PubMed].
  38. Slots J., Salient biochemical characters of Actinobacillus actinomycetemcomitans, Arch. Microbiol. 131 (1982) 60-67 [PubMed].
  39. Smith K.S., Ferry J.G., Prokaryotic carbonic anhydrases, FEMS Microbiol. Rev. 24 (2000) 335-366 [CrossRef] [PubMed].
  40. Smith K.S., Jakubzick C., Whittam T.S., Ferry J.G., Carbonic anhydrase is an ancient enzyme widespread in prokaryotes, Proc. Natl. Acad. Sci. USA 96 (1999) 15184-15189 [CrossRef] [PubMed].
  41. Socransky S.S., Holt S.C., Leadbetter E.R., Tanner A.C., Savitt E., Hammond B.F., Capnocytophaga: new genus of Gram- negative gliding bacteria. III. Physiological characterization, Arch. Microbiol. 122 (1979) 29-33 [PubMed].
  42. Stretton S., Goodman A.E., Carbon dioxide as a regulator of gene expression in microorganisms, Antonie Van Leeuwenhoek 73 (1998) 79-85 [CrossRef] [PubMed].
  43. Stretton S., Marshall K.C., Dawes I.W., Goodman A.E., Characterisation of carbon dioxide-inducible genes of the marine bacterium, Pseudomonas sp. S91, FEMS Microbiol. Lett. 140 (1996) 37-42 [CrossRef] [PubMed].
  44. Takayama M., Ohyama T., Igarashi K., Kobayashi H., Escherichia coli cad operon functions as a supplier of carbon dioxide, Mol. Microbiol. 11 (1994) 913-918 [PubMed].
  45. Talley R.S., Baugh C.L., Effects of bicarbonate on growth of Neisseria gonorrhoeae: replacement of gaseous CO2 atmosphere, Appl. Microbiol. 29 (1975) 469-471 [PubMed].
  46. Valley G., Rettger L.F., The influence of carbon dioxide on bacteria, J. Bacteriol. 14 (1927) 101-137.
  47. Walker H.H., Carbon dioxide as a factor affecting the lag in bacterial growth, Science 76 (1932) 602-604.