Free Access
Issue
Lait
Volume 81, Number 1-2, January-April 2001
10th Meeting of the " Club des Bactéries Lactiques ".
Page(s) 301 - 309
DOI https://doi.org/10.1051/lait:2001133

References

1
Alia, Hayashi H., Sakamoto A., Murata N., Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine, Plant J. 16 (1998) 155-161.
2
Boutibonnes P., Tranchard C., Hartke A., Thammavongs B., Auffray Y., Is thermotolerance correlated to heat-shock protein synthesis in Lactococcus lactis subsp. lactis?, Int. J. Food Microbiol. 16 (1992) 227-236.
3
Caldas T., Demont-Caulet N., Ghazi A., Richarme G., Thermoprotection by glycine betaine and choline, Microbiology 145 (1999) 2543-2548.
4
Condon S., Responses of the lactic acid bacteria to oxygen, FEMS Microbiol. Rev. 46 (1987) 269-280.
5
Csonka L.M., Hanson A.D., Prokaryotic osmoregulation: genetics and physiology, Annu. Rev. Microbiol. 45 (1991) 569-606.
6
de Man J.C., Rogosa M., Sharpe E., A medium for the cultivation of the lactobacilli, J. Appl. Bacteriol. 23 (1960) 130-135.
7
Flahaut S., Benachour A., Giard J.C., Boutibonnes P., Auffray Y., Defence against lethal treatments and de novo protein synthesis induced by NaCl in Enterococcus faecalis ATCC19433, Arch. Microbiol. 165 (1996) 317-324.
8
Fletcher S.A., Csonka L.N., Characterization of the induction of increased thermotolerance by high osmolarity in Salmonella, Food Microbiol. 15 (1998) 307-317.
9
Glaasker E., Tjan F.S., ter Steeg P.F., Konings W.M., Poolman B., Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress, J. Bacteriol. 180 (1998) 4718-4723.
10
Hartke A., Bouché S., Gansel F., Boutibonnes P., Auffray Y., UV-inducible proteins and UV-induced cross protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis, Arch. Microbiol. 163 (1995) 329-336.
11
Hecker M., Schumann W., Volker U., Heat-shock and general stress response in Bacillus subtilis, Mol. Microbiol. 19 (1996) 417-428.
12
Hengge-Aronis R., Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli, Cell 72 (1993) 165-168.
13
Kolter R., Siegele D.A., Tormo A., The stationary phase of the bacterial life cycle, Annu. Rev. Microbiol. 47 (1993) 855-874.
14
Lewis J.G., Learmonth R.P., Watson K., Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae, Microbiology 141 (1995) 687-694.
15
Lindquist S., Craig E.A., The heat-shock proteins, Annu. Rev. Genet. 22 (1988) 631-677.
16
Lim E.M., Smokvina T., Ehrlich S.D., Maguin E., Réponse de Lactobacillus bulgaricus aux stress acides et sels biliaires, 5e Congrès de la Société Française de Microbiologie, Lille, France, 1998.
17
Loewen P.C., Hengge-Aronis R., The role of the sigma factor $\sigma^{\rm S}$ (KatF) in bacterial global regulation, Annu. Rev. Microbiol. 48 (1994) 53-80.
18
Narberhaus F., Negative regulation of bacterial heat shock genes, Mol. Microbiol. 31 (1999) 1-8.
19
Neidhardt F.C., VanBogelen R.A., Vaughn V., The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18 (1984) 295-329.
20
O'Sullivan E., Condon S., Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis, Appl. Environ. Microbiol. 63 (1997) 4210-4215.
21
Piper P.W., Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev. 11 (1993) 339-355.
22
Piper P.W., Ortiz-Calderon C., Holyoak C., Coote P., Cole M., Hsp30, the integral plasma membrane heat-shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase, Cell Stress Chaperones 2 (1997) 12-24.
23
Roth W.G., Porter S.E., Leckie M.P., Porter B.E., Dietzler D.N., Restoration of cell volume and the reversal of carbohydrate transport and growth inhibition of osmotically Escherichia coli, Biochem. Biophys. Res. Commun. 126 (1985) 442-449.
24
Teixeira P., Castro H., Kirby R., Inducible thermotolerance in Lactobacillus bulgaricus, Lett. Appl. Microbiol. 18 (1994) 218-221.
25
Teixeira P., Castro H., Mohacsi-Farkas C., Kirby R., Identification of sites of injury in Lactobacillus bulgaricus during heat stress, J. Appl. Microbiol. 83 (1997) 219-226.
26
Tesone S., Hughes A., Hurst A., Salt extends the upper temperature limit for growth of food-poisoning bacteria, Can. J. Microbiol. 27 (1981) 970-972.
27
Volker U., Mach H., Schmid R., Hecker M., Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis, J. Gen. Microbiol. 138 (1992) 2125-2135.
28
Visick J., Clark S., Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins, Mol. Microbiol. 16 (1995) 835-845.
29
Weitzel G., Pilatus U., Rensing L., The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast, Exp. Cell Res. 170 (1987) 64-79.
30
Whitaker R.D., Batt C.A., Characterization of the heat-shock response in Lactococcus lactis subsp. lactis, Appl. Environ. Microbiol. 57 (1991) 1408-1412.
31
Yura T., Nakahigashi K., Regulation of the heat-shock response, Curr. Opin. Microbiol. 2 (1999) 153-158.

Abstract

Copyright INRA, EDP Sciences

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.