Free Access
Issue
Lait
Volume 84, Number 5, September-October 2004
Page(s) 449 - 462
DOI https://doi.org/10.1051/lait:2004019
References of Lait 84 449-462
  1. Aït-Oukhatar N., Bouhallab S., Bureau F., Drodowsky M., Maubois J.L., Arhan P., Bouglé D., Bioavailability of caseinophosphopeptide bound iron in young rat, J. Nutr. Biochem. 8 (1997) 190-194.
  2. Allen J.C., Wrieden W.L., Influence of milk proteins on lipid oxidation in aqueous emulsion. I. Casein, whey protein and $\alpha$-lactalbumin, J. Dairy Res. 49 (1982) 239-248.
  3. Ahn D.U., Kim S.M., Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked-meat homogenates are different from those in raw-meat homogenates, Poultry Sci. 77 (1998) 348-355.
  4. Bernos E., Girardet J.-M., Humbert G., Linden G., Role of the O-phosphoserine clusters in the interaction of the bovine milk $\alpha$s1-, $\beta$-, $\kappa$-caseins and the PP3 component with immobilized iron(III) ions, Biochim. Biophys. Acta 1337 (1997) 149-159 [PubMed].
  5. Berr C., Coudray C., Bonithon-Kopp C., Roussel A.-M., Mainard F., Alperovitch A., Demographic and cardiovascular risk factor in relation to antioxidant status. The EVA study, Int. J. Vit. Nutr. Res. 68 (1998) 26-35.
  6. Berry J.F., Cevallos, W.H., Wade R.R., Lipid class and fatty acid composition of intact peripheral nerve and during Wallerian degeneration, J. Amer. Oil Chem. Soc. 42 (1965) 492-500.
  7. Bishov S.J., Henick A.S., Antioxidant effect of protein hydrolysates in freeze-dried model systems-synergistic action with a series of phenolic antioxidants, J. Food Sci. 40 (1975) 345-348.
  8. Bouhallab S., Léonil J., Maubois J.L., Complexation du fer par le phosphopeptide (1-25) de la caséine $\beta$: action de l'alcalase et de la phosphatase acide, Lait 71 (1991) 435-443.
  9. Bouhallab S., Cinga V., Ait-Outkhatar N., Bureau F., Neuville D., Arkhan P., Maubois J.L., Bouglé D., Influence of various phosphopeptides of caseins on iron absorption, J. Agric. Food Chem. 50 (2002) 7127-7130 [CrossRef] [PubMed].
  10. Briand L., Chobert J.-M., Haertlé T., Tryptic hydrolysis of esterified $\beta$-casein and $\beta$-lactoglobulin, Milchwissenschaft 49 (1994) 367-371.
  11. Buege J.A., Aust S.D., Microsomal lipid peroxidation, in: Fleischer S.F., Packer L., (Eds.), Biomembranes (Part C. Biological oxidation), Methods in Enzymology, Academic Press, London, UK, 1978, pp. 302-310.
  12. Chen Z.Y., Nawar W.W., The role of amino acids in the autoxidation of milk fat, J. Am. Oil Chem. Soc. 68 (1991) 47-50.
  13. Decker E.A., Hultin H.O., Lipid oxidation in foods via redox iron, in: St Angelo A.J. (Ed.), Lipid oxidation in foods, ACS Symposium series 500, Washington, USA, 1992, pp. 35-54.
  14. Diaz M., Dunn C.M., McClements D.J., Decker E.A., Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions, J. Agric. Food Chem. 51 (2003) 2365-2370 [CrossRef] [PubMed].
  15. Emery T., Iron oxidation by casein, Biochem. Biophys. Res. Commun. 182 (1992) 1047-1052 [PubMed].
  16. Eritsland J., Safety considerations of polyunsaturated fatty acids, Amer. J. Clinical Nutr. 71 (2000) 197-201.
  17. Folch J., Lees M., Sloane-Stanley G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226 (1957) 497-509 [PubMed].
  18. Frankel E.N., Lipid oxidation, The Oily Press, Dundee, GB, 1998.
  19. Gaucheron F., Mollé D., Léonil J., Maubois J.L., Selective determination of phosphopeptide $\beta$-CN(1-25) in a $\beta$-casein digest by adding iron: characterization by liquid chromatography with on-line electrospray-ionisation-mass spectrometric detection, J. Chromatogr. B. 664 (1995) 193-200.
  20. Genot C., Kansci G., Laroche M., Measurement of phospholipid oxidation in model membranes by determination of oxygen consumption with a semi-automatic polarographic method, Sci. Aliments 14 (1994) 679-688.
  21. Genot C., Eymard S., Viau M., Comment protéger les acides gras polyinsaturés à longues chaînes $\omega$3 (AGPI-LC $\omega$3) vis-à-vis de l'oxydation ? O.C.L. 11 (2004) 133-141.
  22. Genot C., Métro B., Viau M., Bouchet B., Characterisation and stability during storage of liposomes made of muscle phospholipids, Lebensm.-Wiss. U.-Technol. 32 (1999) 167-174.
  23. Genot C., Meynier A., Riaublanc A., Chobert J.M., Protein alterations due to lipid oxidation in multiphase systems, in: Kamal-Eldin A. (Ed.), Lipid oxidation pathways, AOCS Press, Champaign, USA, 2003, pp. 266-292.
  24. Gordon M.H., The mechanism of antioxidant action in vitro, in: Hudson B.J.F. (Ed.), Food antioxidants, Elsevier, London, UK, 1990, pp. 1-18.
  25. Gutteridge J.M.C., Paterson S.K., Segal A.W., Halliwell B., Inhibition of lipid peroxidation by the iron-binding protein lactoferrin, Biochem. J. 199 (1981) 259-261 [PubMed].
  26. Halliwell B., Gutteridge J.M.C., Role of free radicals and catalytic metal ions in human disease: An overview, in: Packer L., Glazer A.N. (Eds.), Oxygen radicals in biological systems (Part B: Oxygen radicals and antioxidants), Methods in Enzymology, 186, Academic Press, San Diego, USA, 1990, pp.1-85.
  27. Hegenauer J., Saltman P., Nace G., Iron(III)-phosphoprotein chelates: stoichiometric equilibrium constant for interaction of iron(III) and phosphorylserine residues of phosvitin and casein, Biochemisty, 18 (1979) 3865-3879.
  28. Hercberg S., Galan P., Preziosi P., Roussel A.-M., Arnaud J., Richard M.-J., Malvy D., Paul-Dauphin A., Briançon S., Favier A., Background and rationale behind the SU.VI.MAX study, a prevention trial using nutritional doses of a combination of antioxidant vitamins and minerals to reduce cardiovascular diseases and cancers, Int. J. Vit. Nutr. Res. 68 (1998) 3-20.
  29. Hope M.J., Bally M.B., Wegg G., Cullis P.R., Production of large unilamellar vesicles by a rapid extrusion procedure. Characterisation of size distribution, trapped volume and ability to maintain a membrane potential, Biochim. Biophys. Acta 812 (1985) 55-65.
  30. Jacobsen C., Hartvigsen K., Thomsen M.K., Hansen L.F., Lund P., Skibsted L.H., Holmer G., Adler-Nissen J., Meyer A.S., Lipid oxidation in fish oil enriched mayonnaise: calcium disodium ethylenediaminetetracetate, but not gallic acid, strongly inhibited oxidative deterioration, J. Agric. Food Chem. 49 (2001) 1009-1019 [CrossRef] [PubMed].
  31. Jacobsen C., Sensory impact of lipid oxidation in complex food systems, Fett/Lipid 101 (1999) 484-492 [CrossRef].
  32. Kanner J., German J.B., Kinsella J.E., Initiation of lipid peroxidation in biological systems, CRC Crit. Rev. Food Sci. Nutr. 25 (1987) 317-365.
  33. Kansci G., Effets antioxidants de peptides et d'hydrolysats de protéines sur l'oxydation des phospholipides. Thèse de Doctorat, ENSAR, Rennes, France, 1996.
  34. Kansci G., Genot C., Meynier A., Gandemer G., The antioxidant activity of carnosine and its consequences on the volatile profiles of liposomes during iron-ascorbate induced phospholipid oxidation, Food Chem. 62 (1997) 165-175.
  35. Kates M., Separation of lipid mixtures, in: Work T.S., Work E. (Eds.), Techniques of lipidology. Isolation, analysis and identification of lipids, 3rd edn., North Holland Publisher Company, Amsterdam, The Netherlands, 1982, pp. 393-469.
  36. Klein R.A., The detection of oxidation in liposomes preparation, Biochim. Biophys. Acta 210 (1970) 486-489 [PubMed].
  37. Kubow S., Routes of formation and toxic consequences of lipid oxidation products in foods, Free Rad. Biol. Medec. 12 (1992) 63-81.
  38. Leseigneur-Meynier A., Gandemer G., Lipid composition of pork muscle in relation to the metabolic type of the fibres, Meat Sci. 29 (1991) 229-241 [CrossRef].
  39. Manson W., Annan W.D., The structure of a phosphopeptide derived from $\beta$-casein, Arch. Biochem. Biophys. 145 (1971) 16-26 [PubMed].
  40. Manson W., Cannon J., The reaction of $\alpha$s1- and $\beta$-casein with ferrous ions in the presence of oxygen, J. Dairy Res. 45 (1978) 59-67.
  41. Meynier A., Genot C., Gandemer G., Volatile compounds of oxidized pork phospholipids, J. Am. Oil Chem. Soc. 75 (1998) 1-7.
  42. Meynier A., Genot C., Gandemer G., Oxidation of muscle phospholipids in relation to their fatty acid composition, with emphasis on volatile compounds, J. Sci. Food Agric. 79 (1999) 797-804 [CrossRef].
  43. Meynier A., Rampon V., Dalgalarrondo M., Genot C., Hexanal and t-2-hexenal form covalent bonds with whey proteins and sodium caseinate in aqueous solution, Int. Dairy J. 14 (2004) 681-690 [CrossRef].
  44. Nielsen H.K., Covalent binding of peroxidized phospholipid to protein: III. Reaction of individual phospholipids with different proteins, Lipids 16 (1981) 215-222.
  45. Nielsen H.K., Löliger J., Hurrell R.F., Reactions of proteins with oxidizing lipids. Analytical measurements of lipid oxidation and amino acid losses in a whey protein-methyl linolenate model system, British J. Nutr. 53 (1985) 61-73.
  46. O'Connor T.P., O'Brien N.M., Lipid oxidation, in: Fox P.F. (Ed.), Advanced Dairy Chemistry-2: Lipids, Chapman & Hall, London, UK, 1994, pp. 309-347.
  47. Penumetcha M., Khan N., Parthasarathy S., Dietary oxidized fatty acids: an atherogenic risk?, J. Lipid Res. 41 (2000) 1473-1480 [PubMed].
  48. Peres J.M., Bouhallab S., Bureau F., Maubois J.L., Arhan P., Bouglé D., Absorption digestive du fer lié au caséinophosphopeptide 1-25 de la caséine $\beta$, Lait 77 (1997) 433-440.
  49. Pratt D.E., Hudson B.J.F., Natural antioxidants not exploited commercially, in: Hudson B.J.F. (Ed.), Food antioxidants, Elsevier Science, New York, USA, 1990, pp. 171-191.
  50. Rice W.H., McMahon D.J., Chemical, physical, and sensory characteristics of mozzarella cheese fortified using protein-chelated iron of ferric chloride, J. Dairy Sci. 81 (1998) 318-326 [PubMed].
  51. Riemersma R.A., Analysis and possible significance of oxidised lipids in food, Eur. J. Lipid Sci. Technol. 104 (2002) 419-420 [CrossRef].
  52. Rival S.G., Boeriu C.G., Wichers H.J., Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition, J. Agric. Food Chem. 49 (2001) 295-302 [CrossRef] [PubMed].
  53. Snedecor G.W., Cochran W.G., Statistical methods, 7th edn., The Iowa State University Press, Iowa, USA, 1980.
  54. Satué-Gracia M.T., Frankel E.N., Rangavajhyala N., German J.B., Lactoferrin in infant formulas: effect on oxidation, J. Agric. Food Chem. 48 (2000) 4984-4990 [CrossRef] [PubMed].
  55. Tannenbaum S.R., Barth H., Le Roux J.P., Loss of methionine in casein during storage with autoxidizing methyl linoleate, J. Agric. Food Chem. 17 (1969) 1353-1354.
  56. Taylor M.J., Richardson T., Antioxidant activity of cysteine and protein sulfhydryls in a linoleate emulsion oxidized by hemoglobin, J. Food Sci. 45 (1980) 1223-1227.
  57. Tien M., Morehouse L.A., Bucher J.R., Aust S.D., The multiple effects of ethylene diamine tetra acetate in several model lipid peroxidation systems, Arch. Biochem. Biophys. 218 (1982) 450-458 [PubMed].
  58. Vegarud G.E., Langsrud T., Svenning C., Mineral-binding milk proteins and peptides; occurence, biochemical and technological characteristics, British J. Nutr. 84 (Suppl 1) (2000) S91-S98.
  59. Yeung A.C., Glahn R.P., Miller D.D., Effect of iron source on iron availability from casein and casein phosphopeptides, J. Food Sci. 67 (2002) 1271-1275.