Casein micelle size in relation with casein composition and α_{s1}, α_{s2}, β and κ casein contents in goat milk

Alice Pierre*, Françoise Michel, Yvon Le Graët, Laurence Zahoute

Laboratoire de recherches de technologie laitière, Inra, 65, rue de Saint-Brieuc, 35042 Rennes cedex, France

(Received 4 July 1997; accepted 22 July 1998)

Abstract — The relationship between micelle size and casein micelle composition was studied on 21 individual goat milks from animals homozygous for α_{s1} casein variants A, B2, C, E, F and O. A large variation in milk composition was obtained, as α_{s1} secretion levels varied from 7.2 g·kg$^{-1}$ in A milks to none in O milks. Mean micelle size (MMS), determined by photon correlation spectroscopy, varied between samples from 192 nm to 287 nm. This was explained by the different aspects of the histograms of casein distribution according to the size, determined from transmission electron microscopy data, which showed a maximum either in the low diameter range (20–130 nm) or in the large diameter region (130–260 nm), or even intermediary figures with a bimodal distribution. The caseins, α_{s1}CN, α_{s2}CN, βCN and κCN were determined in milks from nitrogen malter determinations ($N \times 6.38$) and RP-HPLC analysis of casein. Polynomial relations were calculated between micelle size and milk compositional parameters. MMS was correlated on one side to the α_{s1}CN and κCN levels in milks (g·kg$^{-1}$) and, on the other side, to the proportions of α_{s1}CN %, α_{s2}CN % and βCN % in total casein. These polynomial relations allowed the prediction of the mean micelle size in milks from the casein levels, with α_{s1}% accuracy. Monofactorial correlations also showed a significant effect of α_{s1}CN ($r = -0.77$), but not any of κCN. Mineral composition of milks was determined, calcium by atomic absorption spectrophotometry and phosphorus, by a colorimetric method. Goat milks were characterized by a constant colloidal inorganic P level (12.4 (SD = 1.7) mmol·kg$^{-1}$). In contrast, colloidal Ca (Cac), SerineP and total colloidal P (Pc) were correlated to the total casein content. The ratio Cac/Pc was the most constant parameter in goat milks, amounting 1.22 (SD = 0.05), presumably characterizing an unique mode of association of caseins in milk. No significant correlation was obtained between the colloidal Ca and P levels in milks and the size of micelles. © Inra/Elsevier, Paris.

goat milk / casein / micelle size / α_{s1} casein/ colloidal calcium and phosphorus

Résumé — Taille des micelles du lait de chèvre en relation avec la composition de la caséine et les teneurs en caséines α_{s1}, α_{s2}, β et κ dans le lait. La relation entre la taille des micelles de caséine et la composition de la fraction caséine des laits a été étudiée sur 21 laits individuels provenant de

* Correspondence and reprints. E-mail: apierre@labtechno.roazhon.inra.fr
chèvres homozygotes pour les variants de la caséine αs1, A, B2, C, E, F ou O, de manière à obtenir une grande variation de composition des laits. En effet, à ces variants correspondent des niveaux de sécrétion différents de la caséine αs1, de 7,2 g·kg⁻¹ pour le variant A à une absence totale pour le variant O. La taille moyenne des micelles a été mesurée par spectrophotométrie de corrélation de photons ; la distribution de la caséine selon le diamètre micellaire a été déterminée par microscopie électronique à transmission. La teneur en caséine totale et la composition de la caséine ont été obtenues à partir du dosage de la matière azotée totale (N x 6,38) et de l’analyse de la caséine par chromatographie liquide à haute pression en phase inverse. Les minéraux colloïdaux, calcium et phosphore, ont été dosés respectivement par spectrophotométrie d’absorption atomique et par une méthode colorimétrique. La taille moyenne des micelles dans les laits variait de 192 à 287 nm. La variation a été expliquée par l’aspect des histogrammes de distribution de la caséine en fonction de la taille, qui montrait, selon le lait, soit un maximum pour des valeurs faibles (20–130 nm), soit un maximum pour des valeurs élevées (130–260 nm), soit encore une distribution bimodale. Une relation polynomiale a été calculée, reliant la taille moyenne des micelles (MMS) et les paramètres de composition des laits (αs1 CN, αs2 CN, βCN et κCN). MMS était significativement corrélée d’une part à la teneur en αs1 CN et κCN des laits, d’autre part à la proportion de αs1 CN %, αs2 CN % et βCN % dans la caséine totale. Ces relations ont permis de déterminer la taille micellaire moyenne des laits de chèvre à partir de leurs teneurs en caséines αs1, αs2, B et κ, avec une incertitude de 15 %. Les corrélations monofactorielles ont aussi été calculées, montrant un effet significatif de la teneur en αs1 CN (r = -0,77), mais non de la κCN. La composition minérale des laits de chèvre était caractérisée par une teneur constante en phosphate inorganique colloïdal (12,4 [SD = 1,7] mmol·kg⁻¹), quelle que soit la teneur en caséine totale, et par des teneurs variables en calcium colloïdal (Cac), en P lié aux sérines et en P colloïdal (Pc) qui étaient corrélées à la teneur en caséine totale du lait. Le rapport Cac/Pc est apparu comme un paramètre invariant, ayant une valeur de 1,22 (SD = 0,05) dans les laits de chèvre, identique à la valeur déjà déterminée dans le lait de vache. Ce rapport semble caractériser un mode d’association unique des caséines dans les micelles des laits. Aucune relation significative entre minéraux et taille micellaire n’a été mise en évidence. © Inra/Elsevier, Paris.

lait de chèvre/ caséine / taille de micelle / caséine αs1 / calcium colloïdal / phosphore colloïdal

1. INTRODUCTION

Casein in milk is structured in micelles, the size of which is dependent on mammalian species [1]. Casein micelle composition includes, in addition to minerals, different caseins, αs1, αs2, B and κ casein for the most part, the relative proportions of which are fairly constant within species except in colustrum, but variable between species. Many investigations have been done on cow milk to determine the relation between micelle size and casein composition. κCN content was found to be in inverse relation to mean micelle size, in cow milks from various breeds [17] and in cow milks containing different κCN variants [12]. In addition, the κCN proportion in artificial micelles made from bovine caseins was found related to micelle size in the same way [23]. Among goat milks, a difference in mean micelle size was reported in relation to αs1 CN variants [20, 24]; consequently, αs1 CN could also be a factor of variation of micelle size.

Goat milk is characterized by a high genetic variability of nature and quantity of caseins, stemming mainly from αs1 CN casein with about 14 variants already identified [13]. The αs1 CN variability results not only in the substitution or deletion of one or two amino acids (A, B2 and C variants), but also in large deletions of the sequences. In the F variant, for example, the segment 59 to 95, containing a SerP cluster, is deleted. The αs1 CN variability also induces variation in the secretion levels [6]. In goat milks its content varies from
Micelle size and casein composition

7.2 g·kg⁻¹ milk for the A variant, to none for the O variants. From the comparison of A and O goat milks, Pierre et al. [18] have observed differences in casein micelle size distribution, which explained differences in mean micelle size: the A milks were characterized by a narrow distribution of micelle sizes centered on a low diameter range while O milks had a broad distribution up to large diameters. Micelle size variation may therefore be related to the α₃CN level in milk.

Such goat milks, having a casein composition varying to a larger extent than cow milks, were expected to be a good model to study the relation between casein composition and micelle size. It is the purpose of this paper to study the size characteristics of micelles (mean micelle size and size distribution of casein), and their chemical composition (casein proportions and colloidal Ca and P) in individual goat milks, from animals being homozygous for the various α₃CN variants, and to search for the relations between size and composition.

2. MATERIALS AND METHODS

Goat milks were provided by Station d'Amélioration Génétique des Animaux de Toulouse (Inra). They were from 21 goats, homozygous for the A, B₂, C, E, F, O alleles of α₃CN. Lactation numbers were the same (2nd) as well as lactation stages (180-215 d).

Determination of total nitrogen (TN) and of pH 4.2 soluble nitrogen (SN), extracted by the Rowland procedure [22], were made by Kjeldahl analysis (N × 6.38). Casein (CN) yield was calculated as: CN = TN - SN. The pH was chosen at 4.2 for the separation of SN, because it corresponds to the isoelectric pH of goat casein in milk, as determined in preliminary experiments. Phosphorus was determined by a photometric method [5] and calcium by atomic absorption spectrophotometry (Spectra A 300, Varian, Palo Alto, Ca, USA). Analyses of Ca and P were on total milk (T) and on ultrafiltrates, obtained either at the natural pH of milk (UF), or after a 1N-HCl addition up to pH 5.0 (UF 5.0). Ultrafiltration was carried on through CF25 Centrificon membranes (Amicon, Paris, France) at 20 °C and it involved a centrifugation step (750 g, 45 min). The following fractions were then calculated: colloidal P (Pc) and colloidal Ca (Cac), as the difference [T-UF]; inorganic colloidal P (Pic), as [UF 5.0 - UF]; Serine P (SerP), as [Pc - Pic].

HPLC chromatography (Varian 5 000, Palo Alto, Ca, USA) allowed the separation of individual components in total casein. Reverse phase separation on a C4 column - 4.6 mm diameter, 150 mm length (Vydac Interchim, Montluçon, France) was achieved using as eluents, (A) 0.1 % trifluoroacetic acid (TFA) in water, and (B) 0.096 % TFA in acetonitrile/water (80/20, v/v). Separation was obtained in 30 min on the column at 40 °C, with a flow rate of 1 mL·min⁻¹ and eluent B increasing from 37 to 53 % [18]. Sample preparation involved separation of casein from milk at 30 °C by precipitation at pH 4.2. Complete description of experiments could be found elsewhere [18]. Proportions of the various caseins in total casein were obtained from the peak areas on the HPLC profiles, corrected by the specific relative absorbance of each casein calculated from the results of Jaubert [11]: αCN, 0.934; α₂-CN, 0.877; α₁-CN, 0.810; β-CN, 1.0.

The contents of the caseins in milk were calculated from the measured proportions combined with the total casein content of milk estimated by N analysis.

Average casein micelle size was determined by photon correlation spectroscopy (PCS) on skimmed milks. Measurements were performed with a Coulter N4MD apparatus (Coultronics, Hialeah, FL, USA), equipped with a He Ne laser light (632.8 nm), with the following experimental conditions: scattering angle 90°, temperature 20 °C, viscosity 1.002 cP and refractive index of the solvent 1.333 (water), measure time 600 s, sample time 4.5 µs. From the measured autocorrelation function of the scattered light was calculated an intensity-weighted average diffusion coefficient. It allowed the calculation of an average diameter corresponding to the size of a spherical particle with an equivalent diffusion coefficient. Experimental methods were the same as already reported [18].

Histograms of micelle size distribution were determined on 11 of the milks only, chosen amongst those having the highest and lowest individual casein content relative to α₃CN, α₂-CN or κ-CN in order to increase any differences. Observations of milk micelles were made on a Philips CM12 apparatus (Philips Industrie, Bobigny, France), on a transmission mode, with a 80 kV voltage. Milk samples were skimmed...
as already described, then diluted 1/250 in 0.2 mol-L\(^{-1}\) sodium cacodylate buffer at pH 7.4. An aliquot was dropped on a collodion-treated carbon grid (300 mesh, 3 mm diameter). After 30 s, excess sample was removed on a filter paper and the grid was immersed in a 2 % (w/v) uranyl acetate solution for 2 min. The grid was then drained and air dried. Histograms were calculated from transmission electron micrographs (TEM) according to Schmidt et al. [23]. From the plates obtained, the number fractions of micelles in 14 size classes of 20 nm width were determined by counting random fields. About 1100 individual diameters of particles were measured for each milk. All the micelles present on the plates were measured. Results were treated as described by Schmidt et al. [23] to obtain the volume moment average diameter. Micelles of diameter ≥ 130 nm are referred to here as “large micelles”. The relative volume fraction of large micelles was calculated from TEM data. Assuming a constant micelle density, the volume distribution is the same as the casein mass distribution.

Polynomial analysis was a multivariate analysis of the least square type.

3. RESULTS

3.1. Size of casein micelles in milks

3.1.1. Mean micelle size

Mean micelle sizes in milks were determined by PCS. The results are grouped in *table 1* according to the \(\alpha_{s1}\)CN variants in milks. Three groups of milks, A, (B\(_2\) + C), (E + F + O) can be distinguished, differing significantly in mean micelle size \((P = 0.05)\), in spite of the small number of milks in each group. Such results are consistent with those of Remeuf [20].

3.1.2. Casein micelle size distribution

Histograms of casein micelle size distribution were obtained from TEM. Typical histograms of milks of each variant group are presented in *figure 1*. Comparing A milks and O milks, a large difference in casein micelle size distribution was observed. In two of the A milks (out of three) the distribution was centered on small

Table I. Mean micelle size (MMS), obtained by PCS, in goat milks according to their \(\alpha_{s1}\) casein variants. Minimum and maximum values are the lowest and highest values obtained for individual milks inside a same variant group.

<table>
<thead>
<tr>
<th>(\alpha_{s1})CN variant</th>
<th>Number of samples</th>
<th>MMS: Mean micelle size (nm)</th>
<th>Minimum value</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>221</td>
<td>192</td>
<td>236</td>
</tr>
<tr>
<td>B(_2)</td>
<td>1</td>
<td>247</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>248</td>
<td>248</td>
<td>249</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>264</td>
<td>241</td>
<td>287</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>266</td>
<td>255</td>
<td>271</td>
</tr>
<tr>
<td>O</td>
<td>3</td>
<td>262</td>
<td>255</td>
<td>283</td>
</tr>
</tbody>
</table>
Figure 1. Casein distribution according to micelle size (from TEM) in individual goat milks with different α_sCN variants: 3 different A variant milks; one milk only for each of the other variants.

Diameter values (20–130 nm), as already reported [18], while in O milk, most of the casein was in large micelles (\geq 130 nm). Milks with B, C, E and F variants showed intermediate profiles, some of the milks having a bimodal distribution. Thus, the profiles progressively changed from A to O milks; the small micelle peak decreased in E and F milks, and disappeared in O milk. The large micelle peak increased up to a maximum in
O milk in which it accounted for about 80% of the casein. The proportion of casein in large micelles (TEM) was found correlated with the mean micelle size in the milks, determined by PCS, with a correlation coefficient $r = 0.76$. An individual variability of micelle distribution was also observed inside a same variant group, as shown by the comparison of histograms of the three different A milks reported in figure 1. A bimodal distribution was observed fore one of the A milks (looting similar to those of the E or F milks, which was confirmed by the statistical comparison of these distributions ($r_{CA, F} = 0.91$).

3.2. Amount of colloidal material in milks

3.2.1. Caseins

Total casein level in milks varied from 17.1 to 33.1 g·kg$^{-1}$ (figure 2a), due to their different α_{s1}CN and βCN contents. Contrarily, no variation of κCN and α_{s2}CN contents was related to the total casein content (figure 2b). The average amounts of α_{s2}CN and κCN in milks were respectively 4.4 (SD = 0.8) g·kg$^{-1}$ and 4.5 (SD = 0.5) g·kg$^{-1}$.

3.2.2. Colloidal Ca and P

Colloidal phosphorus (Pc) levels are reported in figure 3a as a function of total casein, as well as the levels of its two main components, SerP and Pic. An increase in Pc was observed in relation with the amount of SerP, while Pic remained at a quite constant level, 12.4 (SD = 1.7) mmol·kg$^{-1}$, whatever be the total casein content in milk. Colloidal calcium (Cac) also increased with the total casein content (figure 3b) and was highly correlated with Pc ($r = 0.97$). Cac/Pc ratio had quite the same value in all the milks and amounted 1.22 (SD = 0.05). Contrarily, Cac/Pic increased from 1.69 to 2.24, as a result of the Cac variation, with a mean value Cac/Pic = 1.94 (SD = 0.14).

![Figure 2](image-url) **Figure 2.** Levels of caseins in individual goat milks having different total casein contents. g·kg$^{-1}$ ($n = 21$). 2a: α_{s1}CN and βCN. 2b: α_{s2}CN and κCN.

![Figure 3](image-url) **Figure 3.** Colloidal Ca and P levels as a function of total casein in milks. gg·kg$^{-1}$ ($n = 21$). 3a: Colloidal phosphorus (Pc) and its components SerP and Pic. 3b: Colloidal calcium (Cac) and its ratio with Pc.
3.3. Composition of casein micelles

3.3.1. Proportions of caseins and minerals

As a result of the variation in the amounts of the caseins in milks, a wide variation in their relative proportions in total casein was observed: \(\alpha_1 \text{CN} \) (12 % to 26 %), \(\alpha_2 \text{CN} \) (11 % to 29 %), \(\alpha_\text{s-CN} \) (1 % to 30 %), \(\beta \text{CN} \) (39 % to 58 %). Also varied the colloidal Ca and P fractions (expressed as mmol·g\(^{-1}\) of total casein): \(\text{Cac/CN} \) (0.75 to 1.48), \(\text{Pc/CN} \) (0.65 to 1.23), \(\text{Pic/CN} \) (0.36 to 0.76).

3.3.2. Correlations between caseins proportions and colloidal Ca and P

Correlation coefficients between micellar constituents were calculated and are report-
ed in table II. The large variation of \(\alpha_\text{s-CN} \) % induced negative correlations with other caseins, as the variables were linked, leading to a correlation coefficient in the range \(r = -0.80 \). In the mineral fraction, \(\text{Cac/CN} \) and \(\text{Pic/CN} \) were highly correlated \((r = 0.95) \), according to the relation: \(\text{Cac/CN} = 1.49 \text{Pic/CN} + 0.22 \). In this relation, the value of the slope, 1.49, corresponded to the mean value of the Ca/P ratio in the colloidal inorganic calcium phosphate of the milks and the constant, 0.22 represented the average amount of Ca directly bound to casein in the milks, 0.22 mmol·g\(^{-1}\) CN [8]. Between caseins and minerals, the highest correlation coefficients were obtained between \(\alpha_\text{s-CN} \) % and Pic/CN \((r = 0.86) \) and between \(\alpha_\text{CN} \) % and Cac/CN \((r = 0.82) \). \(\kappa \text{CN} \) % was positively correlated with Pic/CN \((r = 0.78) \). The negative correlation coefficient obtained between \(\alpha_\text{s-CN} \) % and Pic/CN...
Table II. Correlation coefficients between casein proportions (% of total casein) and colloidal Ca and P (mmol·g⁻¹ CN) in the micelles of individual goat milks having different αₛ₁CN variants (n = 20).

<table>
<thead>
<tr>
<th>αₛ₁CN %</th>
<th>αₛ₂CN %</th>
<th>βCN %</th>
<th>κCN %</th>
<th>Pic/CN</th>
<th>Pc/CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>αₛ₂CN %</td>
<td>-0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ-CN %</td>
<td>-0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κCN %</td>
<td>-0.85</td>
<td>0.67</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc/CN</td>
<td>-0.58</td>
<td>0.80</td>
<td>ns</td>
<td>0.63</td>
<td>-</td>
</tr>
<tr>
<td>Pic/CN</td>
<td>-0.76</td>
<td>0.86</td>
<td>ns</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>Ca/CN</td>
<td>-0.61</td>
<td>0.82</td>
<td>ns</td>
<td>0.65</td>
<td>0.95</td>
</tr>
<tr>
<td>Ca/Pic</td>
<td>0.79</td>
<td>-0.58</td>
<td>-0.64</td>
<td>-0.70</td>
<td>-0.63</td>
</tr>
</tbody>
</table>

ns: not significant (P = 0.05).
ns : non significatif (P = 0.05).

(r = −0.76) was in agreement with the results of Schmidt et al. [23].

3.4. Relation between micelle size and composition of casein

3.4.1. Correlations

Correlation coefficients between size parameters of casein micelles (mean micelle size, casein in large micelles) and casein or mineral levels in milks (g·kg⁻¹) or caseins proportions in milks (% total casein), are reported in table III. In relation to casein levels in milks (g·kg⁻¹), the higher correlations were observed with total casein and αₛ₁CN. No correlation was observed with κCN. Most of the coefficients related to casein in large micelles are higher than those of mean micelle size. Considering now casein proportions (% of total casein), the higher correlations with size parameters were obtained with αₛ₁CN % (r = −0.73 and −0.86), and also with αₛ₂CN % (r = 0.61 and 0.86). κCN % showed a positive coefficient with MMS (r = 0.46). When the partial correlation, meaning the correlation at a constant αₛ₁CN proportion, was calculated between size and κCN %, the coefficient obtained was r = −0.35, not significant at P = 0.05, but only at P = 0.20. In figure 4 is presented the relation between mean micelle size and casein proportions. In the hypothesis of a linear relation, regression coefficients were calculated which explained 53 % of the variance when related to αₛ₁CN, and respectively 37 % for αₛ₂CN, 44 % for βCN and 21 % for κCN. The amount of casein in large micelles was presented in figure 5 as a function of the αₛ₁CN proportion and of the Pic/CN ratio. αₛ₁CN % explained 74 % of the total variance (figure 5a). In relation with the Pic/CN variation (figure 5b), the curve showed a biphasic course, casein in large micelles increased for Pic/CN values from 0.42 up to about 0.55 and, for the higher values of the ratio, a plateau was reached corresponding to 80 % of casein in large micelles. Other colloidal mineral fractions in milks were not highly correlated with micelle size parameters, neither considering their proportions nor their contents in milks (table III).

3.4.2. Polynomial regressions

Polynomial relations were also calculated between micelle size parameters and the
Table III. Correlation coefficients between size parameters (Mean micelle size, MMS, obtained by PCS; casein in large micelles, ≥ 130 nm, from TEM) and caseins and colloidal minerals (g·kg⁻¹ and percentage of casein) in individual goat milks with different αₛ₁CN variants; \(n \) : number of samples.

<table>
<thead>
<tr>
<th>MMS: Mean micelle size (nm)</th>
<th>Casein in large micelles (%)</th>
<th>Total casein (g·kg⁻¹ milk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g·kg⁻¹ milk</td>
<td>(n = 21)</td>
<td>(n = 11)</td>
</tr>
<tr>
<td>Total casein</td>
<td>-0.72</td>
<td>-0.69</td>
</tr>
<tr>
<td>(\alpha_{s1})CN</td>
<td>-0.77</td>
<td>-0.86</td>
</tr>
<tr>
<td>(\alpha_{s2})CN</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>(\beta)CN</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>(\kappa)CN</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Percentage of total casein

\(\alpha_{s1} \)CN %	-0.73	-0.86	0.82
\(\alpha_{s2} \)CN %	0.61	0.86	-0.71
\(\beta \)CN %	0.66	ns	-0.52
\(\kappa \)CN %	0.46	0.73	-0.82
Pic/CN	0.43	0.77	-0.72

mmol·kg⁻¹ milk | \(n = 20 \) | \(n = 20 \) |
Pc	-0.61	ns	0.53
Pic	ns	ns	ns
Cac	-0.54	ns	0.57
Cac/Pic	-0.64	-0.75	0.75

\(\alpha_{s1}, \alpha_{s2}, \beta, \kappa \) casein levels in milks. Their characteristics are reported in Table IV. Two different relations were calculated, one from the caseins contents (g·kg⁻¹) of the milks, the other from the casein proportions (%). The results show that the \(\alpha_{s1} \)CN and \(\kappa \)CN contents of milks were significantly in relation with micelle size. The two coefficients were negative, the higher being ascribed to \(\kappa \)CN (−20.4). Considering now casein relative proportions, \(\alpha_{s1} \)CN %, \(\alpha_{s2} \)CN % and \(\beta \)CN % had significant coefficients, all three positive. \(\kappa \)CN % showed no significant relation.

4. DISCUSSION

4.1. Micelle size

Profiles of TEM histograms of casein distribution versus micelle diameter varied according to the milks. Casein in goat milks seemed to be preferentially distributed either in small micelles, or in large micelles, or even, in various relative proportions among these two populations according to the milk, leading to bimodal or widely varying distributions. The prevalence of one on the other explained the variations observed in
the mean micelle size (MMS). These variations of MMS were in fact better correlated to the levels of α_{S1}CN and κCN in the milks, than to the α_{S1}CN genetic variant itself.

Mean micelle size (MMS) was found in relation with casein micelle composition according to the following relations:

(a) $\text{MMS}_1 (\text{nm}) = -6.4 \alpha_{S1} \text{CN} - 20.4 \kappa \text{CN} + 364$;

(b) $\text{MMS}_2 (\text{nm}) = 0.95 \alpha_{S2} \text{CN} \% + 3.9 \alpha_{S3} \text{CN} \% + 3.5 \beta \text{CN} \%$.

These equations allowed the determination of MMS with about 15 % accuracy. MMS were calculated for the 21 goat milks using these equations, and the results plotted against the experimental data obtained by PCS measurements (figure 6). The relations obtained explained respectively 78 and 62 % of the variance. Consequently, the equations allow one to calculate an estimated value for mean micelle size in goat milk from its casein content or its casein composition.

In equation (a), relative to casein contents, two caseins intervenes, α_{S1}CN and κCN. The α_{S1}CN content was found negatively correlated to micelle size, which has never been reported up to now. This was confirmed by the value of the monofactorial correlation coefficient between micelle size and α_{S1}CN (table III) which was also negative ($r = -0.77$). It might be a specific feature of goat milks, but, more likely, the large variation of α_{S1}CN content in the goat
The results obtained by Gutiérrez-Adán et al. [7] on the milks of transgenic mice bearing the bovine \(\kappa\)CN gene can be quantitatively explained by the variation in their bovine \(\kappa\)CN contents. In figure 7 is reported, as a function of the bovine \(\kappa\)CN contents of the mice milks, on one side the experimental mean micelle sizes (MMS) measured by these authors, and, on the other side, the mean micelle sizes (MMS-calc) calculated from the experimental size determined in normal mice milk, then modified as a function of the bovine \(\kappa\)CN content, according to the \(-20.4\) \(\kappa\)CN relation. The difference between the two relations is not significant \((P = 0.05)\), meaning that the calculation is a good prediction of the sizes.

In another respects, it is noteworthy that the monofactorial correlation between the \(\kappa\)CN level and micelle size was not significant (table III), contrary to equation (a).

In equation (b), in which intervene the relative proportions of the caseins (%) in goat milks, micelle size was significantly related to the proportions of caseins other than \(\kappa\)CN, the most to \(\beta\)CN %, due to its high coefficient and to its large proportion in milk, and, to a lesser extent, to \(\alpha_{s1}\)CN % and \(\alpha_{s2}\)CN %. No significant effect of \(\kappa\)CN on the size was observed, when \(\kappa\)CN was expressed as a percentage. More, the monofactorial correlation between size and \(\kappa\)CN % gave a positive hardly significant coefficient \((r = 0.46)\). Only after calculation of the corresponding partial correlation of \(\kappa\)CN % at a constant \(\alpha_{s1}\)CN %, a negative coefficient for \(\kappa\)CN % became apparent. So, it
seems that the weight of the α_s1CN level, having the greater range of variation in goat milks matched with a passably high coefficient, totally masked or modified the weight of the κCN variation, in spite of its higher coefficient. A negative coefficient for κCN% would be in agreement with the results obtained either in cow milk or in goat milk comparing the composition of the small and large micelles of individual milks [2–4, 14, 15, 19, 24]. Schmidt et al. [23] also demonstrated that the size of micelles (artificial
micelles) was inversely related to κCN proportions. However, conditions of their experimentation were such (variation of κCN proportions at a constant casein level in the suspension) that there was an ‘one-to-one’ relation between κCN concentrations and κCN proportions. Thus, from their results, it was not possible to conclude which of the two was the efficient parameter. In contrast, when individual milks were studied, not only κCN concentration varied, but also, and independently, their total casein concentration.

Considering micelle size in relation with colloidal minerals, no main correlation was obtained, as already reported for cow milk casein micelles by Schmidt et al. [23], apart the relation reported between casein in large micelles and Pic/CN.

4.2. Micelle composition

The wide range of variation observed in the casein levels and in their proportions was however compatible with the edification of micelles in all the goat milks, as observed by TEM. Micelles appeared, in every case, as constituted of granular aggregates of various sizes, similar to those already described by Richardson et al. [21] as well in goat milk, as in cow milk and ewe milk.

The levels of colloidal mineral in goat milks showed many similarities with that of cow milk at a same total casein content (table V). Some of the parameters determined were found varying according to the total casein content in goat milks, as SerP, Pc and Cac, while others remained constant in all the milks, as Pi (12.4 (SD = 1.7) mmol·kg⁻¹), or Cac/Pc, 1.22 (SD = 0.05). The constant Cac/Pc ratio observed in either cow or goat milk, confirmed the main role of calcium phosphate during casein aggregation into micelles [8, 9, 16].

4.3. Conclusion

The unique structural appearance of micelles assorted of a same mineral composition could mean that a same mineral
Table V. Composition of micellar calcium phosphate in cow milk and in a goat milk having the same total casein content (25.8 g·kg⁻¹).

<table>
<thead>
<tr>
<th>Cow milk*</th>
<th>Goat milk**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cac</td>
<td>21.2</td>
</tr>
<tr>
<td>Pc</td>
<td>17.3</td>
</tr>
<tr>
<td>Pic</td>
<td>10</td>
</tr>
<tr>
<td>SerP</td>
<td>7.3</td>
</tr>
<tr>
<td>Cac/Pc</td>
<td>2.13</td>
</tr>
<tr>
<td>Cac/Pic</td>
<td>1.23</td>
</tr>
</tbody>
</table>

* From [10] and [25]; ** from figure 3.

Contrarily, the preferential edification of low size or large size micelles, leading to different mean micelle sizes, seemed to be dependent on the \(\alpha_1CN \) and \(\kappa CN \) levels in milks. It is suggested that the \(\alpha_1CN \) and \(\kappa CN \) levels in milks could be the influential factors on micelle size regulation, or at least, be in close relation with them, although our experiments have not demonstrated they were causal. However, it is not yet possible to explain the results observed from the present knowledge on goat milk.

ACKNOWLEDGMENTS

We are grateful to J.L. Maubois for facilities and for his critical reading of the manuscript. Thanks to J. Léonil for helpful advice and to C. Holt for useful criticisms during the preparation of the manuscript. We thank E. Manfredi (Inra, Station d'amélioration génétique des animaux, Toulouse, France) for providing us with the goat milks and also P. Chastin, J. Martin and M. Bouvier, who sorted out the goats and organized collection and expedition of milks.

Electron microscopy measurements were performed at the Centre de microscopie électronique à transmission de l'université de Rennes-I (METUR), département de Métabio. The work was partly supported by a grant of the EEC AIR Project CT 94-1441.

REFERENCES

Micelle size and casein composition

