Biochemical aspects of a whey fraction capable of promoting hybridoma proliferation. Comparison with fetal calf serum

AF Derouiche 1, C Legrand 1, JM Bour 1, J Capiaumont 1, MA Gelot 1, B Doussset 1, F Belleville 1*, P Nabet 1, G Linden 2

1 Nancy University I, School of Medicine, Biochemistry Laboratory, BP 184, 54500 Vandœuvre Cedex; 2 Nancy University, Faculty of Sciences, Applied Biochemistry, associated with INRA, BP 239, 54506 Vandœuvre Cedex, France

(Received 26 February 1990; accepted 8 June 1990)

Summary — Human and bovine milks were used as serum substitute for cell cultures. Two whey fractions termed LBS65 and LELm prepared by different steps were routinely used for culturing hybridomas in our laboratory. They stimulated 3H-thymidine incorporation into hybridoma, but a minimum of 1% of fetal calf serum (FCS) was required when the cells were propagated in the long-term. In this investigation, the chemical composition of LBS65 and LELm was studied in parallel to FCS composition. LBS65 and FCS had a total protein level of about 40 g/l, while LELm contained them at a concentration of 11 g/l. The amino acid content of FCS and LBS65 was very similar (about 4 000 μmol/l), whereas it was lower in LELm (about 300 μmol/l). Although the values of nitrogen compounds were different in LBS65 and LELm, these 2 whey fractions behaved similarly to a substitute of FCS. Whey fractions were low in sodium, and high in calcium compared to FCS. The cholesterol level was lower and triglycerides were higher in whey than in FCS. The ratio of unsaturated/saturated fatty acids varied from 1 whey fraction to another. It differed from the FCS ratio. FCS and whey fractions contained small amounts of steroid or peptide hormones. However, progesterone, 17-OH-progesterone, ACTH and cAMP concentrations were higher in the whey fraction than in FCS. Whey fractions are a complex medium containing various compounds able to promote cell growth. However, some unknown compounds present in FCS and absent in milk fractions are required in long-term cell culturing.

Résumé — Composants biochimiques du lactosérum pouvant induire la prolifération cellulaire d'hybridomes. Comparaison avec le sérum de veau fœtal. Les laits humains ou bovins ont été utilisés comme substitut du sérum dans les cultures cellulaires. Deux fractions de lactosérum, appelées LBS65 et LELm, préparées de façon différente, sont couramment utilisées au Laboratoire pour la culture d'hybridomes. Ils stimulent l'incorporation de 3H-thymidine dans des hybridomes, mais si les cultures doivent être faites à long terme, 0,5 ou 1% de sérum de veau fœtal (FCS) reste indispensable. Dans ce travail, est étudiée la composition chimique de LBS65 et LELm parallèlement à celle du sérum de veau fœtal. LBS65 et FCS ont une concentration en protéines totales voisine (environ 40 g/l), alors que LELm n'en contient que 11 g/l. De même, les acides aminés sont au même taux (environ 4 000 μmol/l) dans FCS et LBS65 et à des taux faibles dans le LELm (environ 400 μmol/l) dans FCS et LBS65 et à des taux faibles dans le LELm (environ 300 μmol/l) dans LELm. Les fractions de whey sont riches en calcium et pauvres en sodium comparées au FCS. La proportion d'acides gras insaturés/saturés varie d'une fraction de whey à l'autre, et elle est différente de la proportion du FCS. Les fractions de whey contiennent de petites quantités de hormones stéroïdes ou peptides. Cependant, les concentrations de progesterone, 17-OH-progesterone, ACTH et cAMP étaient plus élevées dans la fraction de whey que dans le FCS. Les fractions de whey sont un milieu complexe contenant divers composants capables de promouvoir le croissance cellulaire. Cependant, certains composants inconnus présents dans le FCS et absents dans les fractions de whey sont nécessaires à la culture à long terme.
Bien que très différentes par leur contenu azoté, LBS65 et LELm se comportent sensiblement de la même façon comme substitut de FCS. Les lactoséums ont, par rapport au FCS, une teinte faible en sodium et élevée en calcium. Le taux de cholestérol est plus bas dans les lactoséums et les triglycérides sont plus élevés. Le rapport (acides gras (AG) insaturés/AG saturés) est très variable d’un lactosérum à l’autre et différent de celui du FCS. FCS et lactoséums contiennent des quantités faibles d’hormones stéroïdes ou peptidiques. Il faut cependant noter que les taux de progestérone, 17-OH-progestérone, ACTH et surtout AMPc sont supérieurs dans les lactoséums. Le lactosérum est donc un milieu complexe contenant de nombreux composés dont chacun peut avoir une activité de croissance. Cependant, certains facteurs encore inconnus, présents dans le FCS, qui sont nécessaires à la croissance à long terme des hybridomes, manquent dans les lactoséums.

INTRODUCTION

Human or bovine milk has been used as a serum substitute for promoting cell growth (Serini and Baserga, 1981; Nano et al, 1982). We have shown that bovine whey fractions, a dairy by-product, can also replace fetal calf serum (FCS) in eucaryote cell lines cultured in the short or long-term (Damerdji et al, 1988). However, in the latter case 0.5 or 1% of FCS must be added to promote long-term proliferation. Furthermore, hybridoma can be stored at −80 °C for 2 years in the same milk fractions (Derouiche et al, 1989).

Whole bovine milk contains various compounds able to stimulate cell growth: growth factors (Shing and Klagsbrun, 1984; Campbell and Baumrucker, 1989), vitamins and trace elements (Blanc, 1981; Alais, 1984), hormones (Koldovsky and Thornburg, 1987), peptides with various activities (Maubois and Léonil, 1989). This paper reports the cell growth promoting activity and composition of 2 whey fractions prepared differently, attempts to correlate the composition with their activity and compare them with the composition of FCS generally employed to supplement culture media.

MATERIALS AND METHODS

Preparation of whey fractions

The first fraction (termed LBS65) was prepared by Bel (Vendome, France) according to an industrial process. The fats and cell debris were removed by centrifugation (4 500 g) at 5 °C for 20 min. The skim milk was heated at 67 °C for 15–20 s and the proteins (mostly casein) were precipitated at 34 °C with 40 ml of diluted 1/1 000 enzyme mixture (chymosin 80% and pepsin 20%) for 100 l of skim milk. The supernatant was heated at 65 °C for 30 min and concentrated 18 times by ultrafiltration (mineral membrane cut-off 10 000). The remaining substance was washed with distilled water and again concentrated 18 times by ultrafiltration at 55 °C. It was then centrifuged twice at 30 100 g for 1 h, then 30 min after removal of the pellet the supernatant was heated at 50 °C, and sterilized by filtration through a 0.22 μm membrane. The fraction LBS65 was stored at −20 °C.

The second fraction (termed LELm) was recovered during cheese-making (Sodial, Metz, France). The milk was heated at 65 °C for 30 s, and ultrafiltered through mineral membrane (cut-off 10 000). The fat content of the remaining substance was adjusted and biological fermentation was carried out for 18 h and the substance was then pasteurized at 72 °C for 30 s. Penicillium and Cl2Ca were added and biological maturation pursued for 1 h 35. The exudate
was recovered and concentrated 2.5 times by ultrafiltration at 40 °C (mineral membrane cut-off 10,000). The substance was centrifuged twice for 1 h, then 30 min, sterilized by filtration at 50 °C through a 0.22 μm membrane. The LELm fraction was stored at -20 °C in aliquots.

Cell culture

The hybridoma as used in this study were hybridoma F34 secreting an IgG, monoclonal antibody against gonadotropin (gift from Sanofi, Montpellier, France) and hybridoma A49 secreting an IgM monoclonal antibody against blood group A (gift from INSERM, Unité 284, Nancy, France). The cells were routinely cultured in RPMI 1 640 medium (Boehringer Mannheim, FRG) supplemented with 10% FCS (Flow Laboratories, Puteaux, France) heated at 56 °C for 30 min and 4 mmol/l of glutamine.

Short-term cell culture and measurement of DNA synthesis

Hybridoma cell suspension (100 μl) were seeded at the concentration of 7 x 10^4 cells/ml in 96 well microtiter plates (Falcon, Grenoble, France). 5, 10% and 20% of LBS65 or LELm or FCS were added in 100 μl of RPMI 1 640 and the cells were incubated for 24 h. 3H-thymidine (50 μl, 1 μCi/ml specific activity 4.5 Ci/mmol) were added for the last 18 h. The cells were collected with Harvester titertek skarton, washed and the radioactivity was counted.

Long-term cell proliferation

Hybridomas were subcultured in 25 cm² Falcon flasks every 3 d (F34) or every 2 d (A49) in medium containing 1% FCS and 9% whey fractions (LBS65 or LELm). For each passage, viable cells were counted using a hemocytometer after the cells were stained with 0.5% trypan blue and the cell suspension was then brought to 2 x 10^5 cells/ml and seeded again in a new flask in fresh medium containing the same whey fractions and 1% FCS. This experiment was stopped at 7 or 9 d since our experience has shown that this amount of time is enough to evaluate the ability of the medium to maintain a long-term proliferation. However, we also used the same medium in perfused bioreactors for 3 months (data not shown).

Analysis of whey fractions

Protein and non-protein nitrogen compounds

The total proteins were determined by the Gornall's method adapted to SMA II X8 (Technicon, France). Proteins were separated by FPLC according to Andrew's method (Andrews et al., 1985). Amino acids were assayed with a Beckman apparatus (Beckman 7 300) equipped with ion-exchange column (Gelot et al., 1990).

Creatinine was measured with Jaffe's method, uric acid with the uricase method (Boehringer, ref: 242616). These tests were automatically performed on a Prisma apparatus (Analysinstrument Stockholm). Carnitine was tested according to the radioenzymoassay described by Cederblad and Lindstedt's (1972). Histamine was determined by RIA with Immunotech kit (ref: 1 302). NH₃ was tested with Berthelot's method (Biolyon-Wako, ref: 31 291).

Minerals

Na⁺, K⁺ were determined by flame photometry (SMA II X8 Technicon), Ca²⁺ by an automatic (Prisma) colorimetric method using the o-cresolphthalein complexon (Sarkar and Chauhan, 1967), iron by the automatic (Prisma) colorimetric method using the ferrozine (Ichida, 1968), Cu and Zn, by flame atomic absorption spectrometry with Pye Unicam 1 900, Philips as apparatus (Arnaud et al., 1984) and Se by flameless atomic absorption spectrometry (Perkin-Elmer, 2 390) (Dubois et al., 1990). Osmolarity was assayed with an osmometer (Osmomat 030, Genotec).

Energetic compounds

Lactose was determined by gas chromatography, using a capillary column OV₁ (250 x 0.3
cm) and silylated derivatives. Other compounds were assayed by enzymatic methods with kits for which the references will be given in the table of results.

Lipids

Cholesterol and triglycerides were measured with enzymatic methods (cholesterol enzymatic endpoint Randox Laboratories. Triglycerides 800/9, Biolabo) with automatic apparatus (Prisma).

Fatty acids (FA) were extracted by Folch’s method (Folch et al., 1957). Free fatty acids (FFA) were chromatographed (gas chromatograph, Packard 427) on a carbowax column (200 x 0.3 cm) after methylation with methyl 8 (Interchim, Montluçon, France). Total fatty acids (TFA) were measured under the same conditions after alkaline hydrolysis (KOH-ethanol) and methylation with methanol-HCl (Garcia et al., 1986).

Vitamins A and E were evaluated by fluorimetric methods (Hansen and Warnick, 1968, 1969) and vitamin D by radioimmunoassay (RIA) (Amersham TKR 558).

Peptide hormones and cAMP were assayed by RIA with polyclonal or monoclonal antibodies prepared against human hormones. The references of kits are given with the results.

RESULTS

Figures 1 and 2 illustrate the hybridoma F34 and A49 growth at short and long-term in medium containing whey fractions or FCS. Without addition of FCS, whey fractions were able to promote ³H-thymidine incorporation into DNA. However, they were less efficient than FCS. When the media were supplemented with 1% FCS and 9% whey fractions, the cell proliferation in the long-term was possible. It was as effective as with 10% FCS. The antibodies secretion was measured on the 7th d (A49) or on the 9th d (F34). Table I presents the results. Antibodies concentra-

Fig 1. Cell growth measured as ³H-thymidine incorporation into DNA. Cell concentration: 7 x 10⁴ cells/ml in microplate of 96 wells. Each point represents mean and standard deviation of 4 replicates. A: hybridoma F34; B: hybridoma A49; fetal calf serum (FCS), LBS65, LELm.

Mesure de la croissance cellulaire par l’incorporation de ³H-thymidine dans l’ADN. Concentration cellulaire de départ: 7 x 10⁴ cellules/ml dans des microplaques de 96 puits. Chaque point représente la moyenne et l’écart type de 4 essais. A: hybridomes F34; B: hybridome A49; sérum de veau foetal, LBS65, LELm.

Table II gives the composition in proteins and non-protein nitrogen compounds of whey fractions and FCS. The levels of various compounds were lower in LELm, which has been less concentrated. However, LBS65 and LELm were as effective in promoting growth.
Whey fractions and cell cultures

Amino-acids and nitrogen metabolites such as creatinine, uric acid and NH₃, were still present in LBS65 and LELm although whey fractions were ultrafiltered (cut-off 10 000) and washed.

FPLC analysis of proteins (fig 3) showed that α lactalbumin, and β lactoglobulin variants A and B were the principal proteins of whey fractions. α lactalbumin represents 23.75% (LBS65) or 32% (LELm) of total protein, β lactoglobulin variant A 28% (LBS65) or 10% (LELm) variant B 39% or 21% respectively. Serum albumin and immunoglobulin were found in small amounts. LELm was found to be rich

Fig 2. Cell proliferation in the long term. For each passage cell suspension was brought to 2 x 10⁵ cells/ml and seeded in 25 cm² Falcon flasks. Each point is the mean of 3 counts. A: hybridoma F₃₄; B: hybridoma A₄₉; • FCS 10%; ● FCS 1%; ▲ LBS65, ■ LELm.

Mesure de la prolifération cellulaire à long terme. La concentration cellulaire de départ est de 2 x 10⁵ cellules/ml, elle est ramenée à cette valeur à chaque passage. Culture en flacons de 25 cm². Chaque point est la moyenne de 3 comptages. A: hybridomes F₃₄, B: hybridome A₄₉. • sérum de veau foetal 10%; ● sérum de veau foetal 1%; ▲ LBS65, ■ LELm.

Fig 3. Chromatograms of LBS65 and LELm obtained with FPLC. Experimental conditions: Column Mono Q HP 5/5 (Pharmacia). Elution buffer: buffer A: Tris-HCl 20 mmol/l pH 7, buffer B: Tris-HCl 20 mmol/l pH 7 + NaCl 0.35 mol/l. Elution: buffer A (3 min) linear gradient from 0 to 100% of buffer B (20 min). Buffer B (12 min). Solution of peptides: 10 mg/ml. Injection: 200 µl. 1: immunoglobulins, 2: lactoferrin, 3: α lactalbumin, 4: β lactoglobulin A, 5: β lactoglobulin B.

Analyse par FPLC des protéines contenues dans LBS65 et LELm. Conditions expérimentales: Colonne Mono Q HP 5/5 (Pharmacia). Tampon d'éllution: A: Tris-HCl 20 mmol/l pH 7; B: Tris-HCl 20 mmol/l pH 7 + NaCl 0.35 mol/l. Elution: tampon A (3 min), gradient linéaire de 0 à 100% de tampon B (20 min). Tampon B: 12 min. Injection: 200 µl d'une solution à 10 mg/ml de peptides. 1: immunoglobulines, 2: lactoferrine, 3: α lactalbumine, 4: β lactoglobuline A, 5: β lactoglobuline B.
Table I. Antibody concentration measured in medium of \(A_{49} \) and \(F_{34} \) cultures. Medium was supplemented either with FCS (10% and 1%), or with whey fractions (9% plus 1% FCS).

<table>
<thead>
<tr>
<th>RPMI 1640 supplemented with:</th>
<th>Antibody concentration (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_{49}) (F_{34}) IgM IgG 1</td>
</tr>
<tr>
<td>FCS 10%</td>
<td>6.6 4.5</td>
</tr>
<tr>
<td>LBS65 9% + FCS 1%</td>
<td>8 6.2</td>
</tr>
<tr>
<td>LELm 9% + FCS 1%</td>
<td>6.8 4.7</td>
</tr>
<tr>
<td>FCS 1%</td>
<td>– < 1</td>
</tr>
</tbody>
</table>

DISCUSSION

Like whole milk, whey fractions were able to promote cell growth. They are less effective than FCS at the same concentration and cell cultures at long-term require at least 0.5–1% of FCS. The hybridoma were stable in medium supplemented with whey fractions, they continued to secrete antibodies as in medium supplemented with 10% FCS.

The whey fractions used in these experiments have different protein contents. The optimal protein concentration to stimulate cell growth seems to be 15–20 g/l (data not shown). Milk fractions contain, as FCS, binding proteins: \(\beta \) lactoglobulin which binds hydrophobic molecules such as free fatty acids, triglycerides, vitamin A or metals (Zn, Fe, Cu) (Spieker-Polet and Polet, 1981). Lactoferrin, which is present in the whey fraction LELm, accounts for a great part in the mitogenic activity of milk (Nichols et al, 1989). It is an essential growth factor for human lymphocytic cell lines and it is used to manufacture defined serum-free media which promote growth comparable to media containing serum for various cell lines (Hashizume et al, 1983). Lactoferrin is able to bind 2 iron atoms per protein molecule (Masson et al, 1966). It is noteworthy that the level of iron in LELm is higher than in LBS65.

LELm has an amino-acid content of 291 \(\mu \)mol/l while LBS65 contains 3 828 \(\mu \)mol/l and FCS 4 640 \(\mu \)mol/l. Levels of amino-acids may not play a great role in the mitogenic activity of whey fractions because the basal medium RPMI 1 640 already contains an excess of amino-acids. The \(\text{NH}_3 \) content is smaller in whey fractions. This compound is toxic for cells in culture.

Whey fractions, like FCS, include carnitine. Carnitine is essential for the intramitochondrial translocation of fatty acids and branched chain keto-acids and for the
Table II. Concentration of nitrogen compounds contained in whey fraction LBS65 and LELm compared to FCS. Detection threshold of each method is also given. Ind: not detectable; ND: not determined.

Concentration en composés azotés des fractions de lactosérum LBS65 et LELm comparée au FCS. Le seuil de détection de chaque méthode est également indiqué; Ind : non détectable; ND : non déterminé.

<table>
<thead>
<tr>
<th>Component</th>
<th>Detection threshold</th>
<th>FCS</th>
<th>LBS65</th>
<th>LELm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total proteins (g/l)</td>
<td>5</td>
<td>38</td>
<td>42</td>
<td>11</td>
</tr>
<tr>
<td>Free amino acids (µmol/l)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>–</td>
<td>938</td>
<td>509</td>
<td>16</td>
</tr>
<tr>
<td>Amino-butyric acid</td>
<td>–</td>
<td>73</td>
<td>75</td>
<td>–</td>
</tr>
<tr>
<td>Arg</td>
<td>–</td>
<td>21</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Asn + Asp</td>
<td>–</td>
<td>86</td>
<td>388</td>
<td>43</td>
</tr>
<tr>
<td>Citrulline</td>
<td>–</td>
<td>81</td>
<td>116</td>
<td>5</td>
</tr>
<tr>
<td>Cys</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Glx</td>
<td>–</td>
<td>662</td>
<td>445</td>
<td>64</td>
</tr>
<tr>
<td>Gly</td>
<td>–</td>
<td>693</td>
<td>459</td>
<td>32</td>
</tr>
<tr>
<td>His</td>
<td>–</td>
<td>10</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>–</td>
<td>133</td>
<td>Ind</td>
<td>Ind</td>
</tr>
<tr>
<td>Ile</td>
<td>–</td>
<td>110</td>
<td>61</td>
<td>Ind</td>
</tr>
<tr>
<td>Leu</td>
<td>–</td>
<td>246</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>Lys</td>
<td>–</td>
<td>215</td>
<td>114</td>
<td>14</td>
</tr>
<tr>
<td>Met</td>
<td>–</td>
<td>33</td>
<td>28</td>
<td>Ind</td>
</tr>
<tr>
<td>Orn</td>
<td>–</td>
<td>216</td>
<td>257</td>
<td>15</td>
</tr>
<tr>
<td>Phe</td>
<td>–</td>
<td>121</td>
<td>45</td>
<td>Ind</td>
</tr>
<tr>
<td>Pro</td>
<td>–</td>
<td>226</td>
<td>74</td>
<td>Ind</td>
</tr>
<tr>
<td>Ser</td>
<td>–</td>
<td>168</td>
<td>564</td>
<td>28</td>
</tr>
<tr>
<td>Tau</td>
<td>–</td>
<td>165</td>
<td>127</td>
<td>11</td>
</tr>
<tr>
<td>Thr</td>
<td>–</td>
<td>118</td>
<td>151</td>
<td>9</td>
</tr>
<tr>
<td>Tyr</td>
<td>–</td>
<td>59</td>
<td>133</td>
<td>11</td>
</tr>
<tr>
<td>Val</td>
<td>–</td>
<td>266</td>
<td>107</td>
<td>20</td>
</tr>
<tr>
<td>Total A A (µmol/l)</td>
<td>–</td>
<td>4640</td>
<td>3828</td>
<td>291</td>
</tr>
<tr>
<td>NH₃ (mg/l)</td>
<td>0.100</td>
<td>38.1</td>
<td>24.4</td>
<td>9.2</td>
</tr>
<tr>
<td>Creatinine (mg/l)</td>
<td>2</td>
<td>31</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Uric acid (mg/l)</td>
<td>10</td>
<td>26</td>
<td>ND</td>
<td>15</td>
</tr>
<tr>
<td>L Carnitine (µmol/l)</td>
<td>–</td>
<td>61</td>
<td>180</td>
<td>30</td>
</tr>
<tr>
<td>Histamine (nmol/l)</td>
<td>1</td>
<td>Ind</td>
<td>26</td>
<td>ND</td>
</tr>
</tbody>
</table>

Elimination of toxic metabolites of acyl CoA excess (Borum, 1988). Carnitine is normally derived from dietary intake or endogenous synthesis in vivo. Synthesis occurs to a significant extent, but only in the liver and kidney in the human being (Cederblard et al, 1979). Carnitine could be a limiting factor for energy supply from fatty acids in vitro.

The mineral content of whey fractions differs from one to the other and it is very different from the FCS mineral content. LELm and particularly LBS65 have a high calcium concentration. A major proportion
Table III. Osmolarity, pH, and mineral levels in whey fractions LBS65 and LELm compared to FCS.

<table>
<thead>
<tr>
<th>Component</th>
<th>Detection threshold</th>
<th>FCS</th>
<th>LBS65</th>
<th>LELm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmolarity (mOsm/l)</td>
<td></td>
<td>304</td>
<td>138</td>
<td>57</td>
</tr>
<tr>
<td>pH</td>
<td>8.02</td>
<td>6.75</td>
<td>7.21</td>
<td></td>
</tr>
<tr>
<td>Na (g/l)</td>
<td>0.230</td>
<td>3.22</td>
<td>0.437</td>
<td><0.230</td>
</tr>
<tr>
<td>K (g/l)</td>
<td>0.011</td>
<td>0.39</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Cl (g/l)</td>
<td>0.355</td>
<td>3.51</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Ca (mg/l)</td>
<td>5</td>
<td>128</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>P (mg/l)</td>
<td>5</td>
<td>81</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Mg (mg/l)</td>
<td>5</td>
<td>ND</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Fe (mg/l)</td>
<td>0.2</td>
<td>1.63</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Cu (mg/l)</td>
<td>0.104</td>
<td><0.104</td>
<td><0.104</td>
<td>0.100</td>
</tr>
<tr>
<td>Zn (mg/l)</td>
<td>0.130</td>
<td>ND</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Se (µg/l)</td>
<td>5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
</tbody>
</table>

Table IV. Lipids, fatty acids, liposoluble vitamins contained in whey fractions LBS65 and LELm compared to FCS. Ind: not detectable.

<table>
<thead>
<tr>
<th>Component</th>
<th>Detection threshold</th>
<th>FCS</th>
<th>LBS65</th>
<th>LELm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (mg/l)</td>
<td></td>
<td>50</td>
<td>360</td>
<td>190</td>
</tr>
<tr>
<td>Triglycerides (mg/l)</td>
<td></td>
<td>200</td>
<td>900</td>
<td>1740</td>
</tr>
<tr>
<td>Fatty acids (mg/l)</td>
<td></td>
<td>1</td>
<td>Free</td>
<td>Total</td>
</tr>
<tr>
<td>Myristic</td>
<td>–</td>
<td>Ind</td>
<td>–</td>
<td>25</td>
</tr>
<tr>
<td>Palmitic</td>
<td>–</td>
<td>34</td>
<td>84</td>
<td>–</td>
</tr>
<tr>
<td>Palmitoleic</td>
<td>–</td>
<td>Ind</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Phytanic</td>
<td>–</td>
<td>Ind</td>
<td>Ind</td>
<td>4</td>
</tr>
<tr>
<td>Stearic</td>
<td>–</td>
<td>39</td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>Oleic</td>
<td>–</td>
<td>48</td>
<td>113</td>
<td>23</td>
</tr>
<tr>
<td>Linoleic</td>
<td>–</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Linolenic</td>
<td>–</td>
<td>Ind</td>
<td>–</td>
<td>Ind</td>
</tr>
<tr>
<td>Eicosatrienoic</td>
<td>–</td>
<td>–</td>
<td>Ind</td>
<td>7</td>
</tr>
<tr>
<td>Arachidonic</td>
<td>–</td>
<td>–</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>137</td>
<td>291</td>
<td>129</td>
</tr>
<tr>
<td>Ratio unsat/sat</td>
<td></td>
<td>0.87</td>
<td>1.20</td>
<td>0.25</td>
</tr>
<tr>
<td>Vitamin D (µg/l)</td>
<td></td>
<td>4</td>
<td><4</td>
<td><4</td>
</tr>
<tr>
<td>Vitamin E (mg/l)</td>
<td></td>
<td>0.2</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Vitamin A (µg/l)</td>
<td></td>
<td>90</td>
<td><90</td>
<td><90</td>
</tr>
</tbody>
</table>
growth (Kandutsch et al, 1978). The whey fractions added to medium provide 17.1 μg/ml of cholesterol (LBS65) or 5.4 μg/ml (LE Lm) while FCS supplies 36 μg/ml. However, cholesterol must be transported by specific proteins to be biologically active; perhaps β-lactoglobulin plays this role?

FFA are also present in milk fractions. FFA may be required for cell growth as nutrient precursors, structural elements of cell membranes and prostaglandin precursors. Fatty acids can be synthesized by cells, but the cells preferentially use performed FFA from the medium. The FA composition of culture medium greatly influence the FA composition of cells, particularly FA of membrane phospholipids (Delplanque and Jacotot, 1987), FFA of whey fractions may be carried by proteins such as serum albumin and β-lactoglobulin (Spieker-Polet and Polet, 1981) and transferred from these proteins to the cells. The percentage of unsaturated FFA is higher in LELm than in LBS65 or in FCS.

Liposoluble vitamins normally present in the whole milk (Blanc, 1981) are largely lost during milk treatment.

Table V. Energetic component concentration in whey fractions compared to FCS.

<table>
<thead>
<tr>
<th>Component</th>
<th>Reference kits</th>
<th>Detection threshold</th>
<th>FCS</th>
<th>LBS65</th>
<th>LELm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/l)</td>
<td>Biotrol ref A02463</td>
<td>70</td>
<td>860</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>Galactose (mg/l)</td>
<td>Boeringher ref 124273</td>
<td>50</td>
<td>< 50</td>
<td>< 50</td>
<td>56.5</td>
</tr>
<tr>
<td>Lactose (g/l)</td>
<td>CPG</td>
<td>0.100</td>
<td>--</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>Pyruvate (mg/l)</td>
<td>Boeringher ref 124982</td>
<td>0.8</td>
<td>1.3</td>
<td>< 0.8</td>
<td>< 0.8</td>
</tr>
<tr>
<td>Lactate (mg/l)</td>
<td>Boeringher ref 256773</td>
<td>13</td>
<td>190</td>
<td>1,481</td>
<td>73</td>
</tr>
</tbody>
</table>

of this calcium could be bound to proteins (Harzer et al, 1986), which may be the reason for the nontoxicity of calcium. Iron and zinc are found in whey fractions. The iron concentration is higher than that reported by Blanc (1981) in whole bovine milk. It is known to stimulate cell growth (Perez-Infante and Mather, 1982).

Although the milk was skimmed before use, whey fractions still contain cholesterol and triglycerides. It is well established that cholesterol is essential for the growth of mammalian cells in culture (Chen, 1984). It plays a role in maintaining the integrity of the cells and regulating the fluidity of cellular membrane lipids. Most cultured cells are able to synthesize cholesterol, but they also efficiently utilize cholesterol from the medium. The cholesterol supplementation was variable with the cell lines: 7.5 μg/ml for human fibroblasts (Ostlund and Yang, 1985), 40 μg/ml for human renal cells (Gonzalez et al, 1974), 1.9 μg/ml for BSC1 and human heart cells. However, autooxidation of cholesterol occurs during handling of culture media and oxysterols formed inhibit sterol synthesis and cell growth (Kandutsch et al, 1978). The whey fractions added to medium provide 17.1 μg/ml of cholesterol (LBS65) or 5.4 μg/ml (LE Lm) while FCS supplies 36 μg/ml. However, cholesterol must be transported by specific proteins to be biologically active; perhaps β-lactoglobulin plays this role?...
Table VI. Steroid and peptidic hormone contents of whey fraction compared to FCS. ND : not determined.

Concentration en hormones stéroïdes et peptidiques des fractions de lactosérum comparée à celle du FCS; ND = non déterminé.

<table>
<thead>
<tr>
<th>Component</th>
<th>Reference of kits</th>
<th>Detection threshold FCS</th>
<th>LBS65</th>
<th>LELm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydrotestosterone</td>
<td>Biomérieux 3H-DHT RIA Kit</td>
<td>50</td>
<td>< 50</td>
<td>50</td>
</tr>
<tr>
<td>Testosterone (ng/l)</td>
<td>CIS SB-Testo</td>
<td>80</td>
<td>< 80</td>
<td>< 80</td>
</tr>
<tr>
<td>Cortisol (μg/l)</td>
<td>Immunotech 1114</td>
<td>4.6</td>
<td>< 4.6</td>
<td>< 4.6</td>
</tr>
<tr>
<td>17 OH-progesterone</td>
<td>CIS OHP-H</td>
<td>60</td>
<td>< 60</td>
<td>160</td>
</tr>
<tr>
<td>Progesterone (ng/l)</td>
<td>CIS SB-PROG</td>
<td>50</td>
<td>< 50</td>
<td>100</td>
</tr>
<tr>
<td>Peptides hormones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTH (ng/l)</td>
<td>CIS ACTH-PR</td>
<td>10</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>LH (μg/l)</td>
<td>CIS LHK-PR</td>
<td>0.2</td>
<td>< 0.2</td>
<td>0.55</td>
</tr>
<tr>
<td>FSH (μg/l)</td>
<td>CIS FSHK-PR</td>
<td>0.3</td>
<td>< 0.3</td>
<td>< 0.3</td>
</tr>
<tr>
<td>Insulin (mU/l)</td>
<td>CIS SB-INSI-S</td>
<td>2.5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peptide C (nmol/l)</td>
<td>CIS IA-C-PEP (bovine peptide C)</td>
<td>100</td>
<td>< 100</td>
<td>< 100</td>
</tr>
<tr>
<td>Prolactin (μg/l)</td>
<td>Immunotech 2121</td>
<td>0.5</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>HGH (μg/l)</td>
<td>CIS SB-HGH</td>
<td>0.25</td>
<td>< 0.25</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Somatomedin C (nmol/l)</td>
<td>CIS IN-SOMC</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Gastrin (ng/l)</td>
<td>CIS GASK-PR</td>
<td>10</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>Second messenger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cAMP (nmol/l)</td>
<td>CIS cAMP-K</td>
<td>0.2</td>
<td>1</td>
<td>325</td>
</tr>
</tbody>
</table>

The presence of steroid hormones such as glucocorticoids, estrogen and progesterone is demonstrated in whole bovine milk (Koldovsky and Thornburg, 1987). Amongst steroid hormones, only progesterone and 17-OH-progesterone are present in a measurable quantity in whey fractions. Progesterone has sometimes been added
Whey fractions and cell cultures

... to defined culture media for hybridoma proliferation (Cleveland et al., 1983).

The levels of peptide hormones were underestimated because they were determined by RIA using antibodies against human hormones. Only ACTH and gastrin are present in appreciable amounts in the whey fraction (LBS65). ACTH has been described to stimulate hybridoma proliferation (Murakami et al., 1982). Prolactin is at a level lower than that in whole milk (Blanc, 1982).

Various growth factors which contribute to the growth promoting properties of milk have been found in human and bovine milks (Shing and Klagsbrun, 1984). A small amount of Sm-C is left behind in milk fractions. Other growth factors were not measured.

It is noteworthy that whey fractions are rich in cAMP, which seems to be assimilable by cells in culture. Perhaps it is bound to other molecules. In fact, its level decreases during cell proliferation and we have established that it is not merely destroyed during culture time.

Although cleared of casein and ultrafiltered (cut-off 10000) whey fractions are a complex medium containing various components able to promote cell growth. However, some compounds present in FCS and absent in milk fractions are required in long-term cell culturing.

ACKNOWLEDGMENTS

This work was supported by grants from Nancy I University, district de Nancy, Mission de la Recherche de la Region, Region de Lorraine and CEE (contrat BAP 0129 F).

REFERENCES

Dubois F, Teby A, Belleville F, Nabet P, Pay-
sant P (1990) Valeurs usuelles du sélénium
sérique dans une population de l’Est de la

Folch J, Lees M, Stanley GHS (1957) A simple
method for the isolation and purification of to-
tal lipids from animal tissues. J Biol Chem
226, 497-509

Garcia J, Ghisolfi J, Lapalu-Traun G, Periquet
Dépistage d’une carence en acides gras essentiels chez l’enfant. Intérêt respectif
du dosage des acides gras dans les lipides
totaux et les fractions lipidiques du sérum.
Ann Biol Clin 44, 380-383

Gelot MA, Jeandel C, Belleville F, Nabet P, Pé-
nin F, Cuny G (1990) Acides aminés du li-
quide céphalo-rachidien dans la maladie

Gonzalez R, Dempsey ME, Elliot AY, Fraley EE
(1974) Studies of sterol synthesis, synthesis
regulation and transport in cultured human
kidney. Exp Cell Res 87, 152-158

Hansen LG, Warnick WS (1969) Fluorimetric
micromethod for vitamin A and E. Am J Clin
Pathol 51, 538-541

Hansen LG, Warnick WJ (1968) A fluorimetric
micromethod for serum vitamin A. Tech Bull
Regist Med Technol 9, 239-243

Harzer G, Hang M, Bindels JG (1986) Biochem-
istry of human milk in early lactation. Z Er-
naehrungswiss 25, 77-90

Identification of lactoferrin as an essential
growth factor for human lymphocytic cell
lines in serum-free medium. Biochim Bio-
phys Acta 763, 377-382

Ichida I (1968) A simple method for the determi-
nation of serum iron. Clin Chim Acta 22, 271-
275

Kandutsch AA, Chen HW, Heiniger HJ (1978)
Biological activity of some oxygenated ster-

Koldovský O, Thornburg W (1987) Hormones in
milk. J Pediatr Gastroenterol Nutr 6, 172-196

Masson PL, Heremans JF, Prignot JJ, Wauters
G (1966) Immunohistochemical localization
and bacteriostatic properties of an iron bind-
ing protein from bronchial mucus. Thorax 21,
538-544

activité biologique. Lait 69, 245-265

Murakami H, Masui H, Sato GH, Sueoka N,
Chow TP, Kano-Sueoka T (1982) Growth of
hybridoma cells in serum-free medium: etha-
nolamine is an essential component. Proc
Natl Acad Sci USA 79, 1158-1162

tion des protéines du lait comme milieu nutri-
tif dans les cultures cellulaires. Lait 62, 600-
606

Nichols BL, Mc Kee K, Putman M, Henry JF,
Nichols VN (1989) Human lactoferrin supple-
mentation of infant formulas increases thymi-
dine incorporation into the DNA of rat crypt
cells. J Pediatr Gastroenterol Nutr 8, 102-109

Ostlund RE, Yang JW (1985) Effect of choleste-
rol and growth factors on the proliferation of
cultured human skin fibroblasts. Exp Cell Res
161, 509-516

Folch J, Lees M, Stanley GHS (1957) A simple
method for the isolation and purification of to-
tal lipids from animal tissues. J Biol Chem
226, 497-509

Garcia J, Ghisolfi J, Lapalu-Traun G, Periquet
Dépistage d’une carence en acides gras essentiels chez l’enfant. Intérêt respectif
du dosage des acides gras dans les lipides
totaux et les fractions lipidiques du sérum.
Ann Biol Clin 44, 380-383

Gelot MA, Jeandel C, Belleville F, Nabet P, Pé-
nin F, Cuny G (1990) Acides aminés du li-
quide céphalo-rachidien dans la maladie

Gonzalez R, Dempsey ME, Elliot AY, Fraley EE
(1974) Studies of sterol synthesis, synthesis
regulation and transport in cultured human
kidney. Exp Cell Res 87, 152-158

Hansen LG, Warnick WS (1969) Fluorimetric
micromethod for vitamin A and E. Am J Clin
Pathol 51, 538-541

Hansen LG, Warnick WJ (1968) A fluorimetric
micromethod for serum vitamin A. Tech Bull
Regist Med Technol 9, 239-243

Harzer G, Hang M, Bindels JG (1986) Biochem-
istry of human milk in early lactation. Z Er-
naehrungswiss 25, 77-90

Identification of lactoferrin as an essential
growth factor for human lymphocytic cell
lines in serum-free medium. Biochim Bio-
phys Acta 763, 377-382

Ichida I (1968) A simple method for the determi-
nation of serum iron. Clin Chim Acta 22, 271-
275

Kandutsch AA, Chen HW, Heiniger HJ (1978)
Biological activity of some oxygenated ster-

Koldovský O, Thornburg W (1987) Hormones in
milk. J Pediatr Gastroenterol Nutr 6, 172-196

Masson PL, Heremans JF, Prignot JJ, Wauters
G (1966) Immunohistochemical localization
and bacteriostatic properties of an iron bind-
ing protein from bronchial mucus. Thorax 21,
538-544

activité biologique. Lait 69, 245-265

Murakami H, Masui H, Sato GH, Sueoka N,
Chow TP, Kano-Sueoka T (1982) Growth of
hybridoma cells in serum-free medium: etha-
nolamine is an essential component. Proc
Natl Acad Sci USA 79, 1158-1162

tion des protéines du lait comme milieu nutri-
tif dans les cultures cellulaires. Lait 62, 600-
606

Nichols BL, Mc Kee K, Putman M, Henry JF,
Nichols VN (1989) Human lactoferrin supple-
mentation of infant formulas increases thymi-
dine incorporation into the DNA of rat crypt
cells. J Pediatr Gastroenterol Nutr 8, 102-109

Ostlund RE, Yang JW (1985) Effect of choleste-
rol and growth factors on the proliferation of
cultured human skin fibroblasts. Exp Cell Res
161, 509-516

Perez-Infante V, Mather JP (1982) The role of
transferrin in the growth of testicular cell lines
in serum-free medium. Exp Cell Res 142,
325-332

Sarkar BC, Chauhan UP (1967) A new method
for determining micro quantities of calcium in
biological materials. Anal Biochem 20, 155-
166

Serini A, Baserga R (1981) Routine growth of
cell lines in medium supplemented with milk
instead of serum. Cell Biol Int Rep 5, 339-
345

Shing YW, Klagsbrun M (1984) Human and bo-
vine milk contain different sets of growth fac-
tors. Endocrinology 115, 273-282

Spieker-Polet E, Polet H (1981) Requirement of
a combination of a saturated and an unsatu-
rated free fatty acid and a fatty acid carrier
protein for in vitro growth of lymphocytes. J
Immunol 126, 949-954