Free access
Issue
Lait
Volume 82, Number 6, November-December 2002
Page(s) 645 - 656
DOI http://dx.doi.org/10.1051/lait:2002039

References

  1. Accolas J.P., Veaux M., Vassal L., Mocquot G., Évolution de la flore lactique thermophile au cours du pressage des fromages à pâte cuite, Lait 58 (1978) 118-132.
  2. Alemayehu D., O'Sullivan E., Condon S., Changes in acid tolerance of Lactococcus lactis during growth at constant pH, Int. J. Food Microbiol. 10 (2000) 215-221.
  3. Auffray Y., Lecesne E., Hartke A., Boutibonnes P., Basic features of the Streptococcus thermophilus heat shock response, Curr. Microbiol. 30 (1995) 87-91.
  4. Bourgoin F., Pluvinet A., Gintz B., Decaris B., Guedon G., Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci, Gene 233 (1999) 151-161.
  5. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding, Anal. Biochem. 72 (1976) 248-254.
  6. Cerning J., Marshall V.M., Exopolysaccharides produced by the dairy lactic acid bacteria, Recent Res. Dev. Microbiol. 3 (1999) 195-209.
  7. Chamba J.F., Prost F., Mesure de l'activité acidifiante des bactéries lactiques thermophiles utilisées pour la fabrication des fromages à pâte cuite, Lait 69 (1989) 417-431.
  8. Chopard M.A, Schmitt M., Perreard E., Chamba J.F., Aspect qualitatif de l'activité protéolytique des lactobacilles thermophiles utilisés en fabrication de fromage à pâte pressée cuite, Lait 81 (2001) 183-194.
  9. Dave R., Shah N., Effect of cysteine on the viability of yogurt and probiotic bacteria in yogurts made with commercial starter cultures, Int. Dairy J. 7 (1997) 537-545.
  10. De Roissart H., Luquet F.M., Bactéries Lactiques, Lorica, Uriage, France 1994.
  11. De Vuyst L., Vanderveken F., Van de Ven S., Degeest B., Production and isolation of exopolysaccharides from Streptococccus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis, J. Appl. Microbiol. 84 (1998) 1059-1068.
  12. Degeest B., De Vuyst L., Indication that the nitrogen souce influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium, Appl. Environ. Microbiol. 65 (1999) 2863-2870.
  13. Duwat P., Ehrlich S.D., Gruss A., Effects of metabolic flux on stress response patways in Lactococcus lactis, Mol. Microbiol. 31 (1999) 845-858.
  14. Exterkate F.A., A dual directed control of cell wall proteinase in Streptococcus cremoris AM1: a possible mechanism of regulation during growth in milk, J. Dairy Sci. 68 (1985) 562-571.
  15. Ezzat N., El Soda M., Desmazeaud M.J., Ismail A., Peptide hydrolases from the Thermobacterium group of lactobacilli. II. Physiological factors and enzyme production, Milchwissenschaft 37 (1982) 666-668.
  16. Faber E.J., Kamerling J.P., Vliegentharet F.F., The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures, Carbohydr. Res. 310 (1998) 269-276.
  17. Fernandez L., Beerthuyzen M.M., Brown J., Siezen R.J., Coolbear T., Holland R., Kuipers O.P., Cloning, characterization, controlled overexpression and inactivation of the major tributyrin esterase gene of Lactococcus lactis, Appl. Environ. Microbiol. 66 (2000) 1360-1368.
  18. Fernandez-Espla M.D., Garault P., Monnet V., Rul F., Streptococcus thermophilus cell wall-anchored proteinase: release, purification and biochemical and genetic characterization, Appl. Environ. Microbiol. 66 (2000) 4772-4778.
  19. Gonzalez-Marquez H., Perrin C., Bracquart P., Guimont C., Linden G., A 16 kDa protein family overexpressed by Streptococcus thermophilus PB18 in acids environments, Microbiology 143 (1997) 1587-1592.
  20. Grufferty M.B., Fox P.F., Milk alkaline proteinase, J. Dairy Res. 55 (1988) 609-630.
  21. Halbleib C.M., Zhang Y., Ludden P.W., Regulation of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase by a redox-dependent conformational change of nitrogenase Fe protein, J. Biol. Chem. 275 (2000) 3493-3500.
  22. Le Bourgeois P., Mata M., Ritzenthaler P., Genome comparison of Lactococcus strains by pulse field gel electrophoresis, FEMS Microbiol. Lett. 50 (1989) 65-69.
  23. Lim E.M., Ehrlich S.D., Maguin E., Identification of stress inducible proteins in Lactobacillus delbrueckii ssp. bulgaricus, Electrophoresis 21 (2000) 2557-2561.
  24. O'Sullivan E., Condon S., Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis, Appl. Environ. Microbiol. 63 (1997) 4210-4215.
  25. Perrin C., Gonzalez-Marquez H., Gaillard J.L., Bracquart P., Guimont C., Reference map of soluble proteins from Streptococcus thermophilus by two-dimensional electrophoresis, Electrophoresis 21 (2000) 949-955.
  26. Perrin C., Poirson C., Bracquart P., Gaillard J.L., Guimont C., Établissement de l'empreinte protéique de base de Streptococcus thermophilus par 2D-PAGE, Sci. Aliments 20 (2000) 97-104.
  27. Petry S., Furlan S., Crepeau M.J., Cerning J., Desmazeaud M., Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium, Appl. Environ. Microbiol. 66 (2000) 3427-3431.
  28. Rallu F., Gruss A., Ehrlich D., Maguin E., Acid- and mutistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals, Mol. Microbiol. 35 (2000) 517-528.
  29. Rechninger K.B., Siegumfeldt H., Svendsen I., Jakobsen M., Early protein synthesis of Lactobacillus delbrueckii ssp bulgaricus in milk revealed by 35S methionine labeling and two-dimensional gel electrophoresis, Electrophoresis 21 (2000) 2660-2669.
  30. Richardson B.C., Elston P.D., Plasmin activity in commercial caseins and caseinates, J. Dairy Sci. Technol. 19 (1984) 63-66.
  31. Stingele F., Mollet B., Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6, Mol. Microbiol. 22 (1996) 357-366.
  32. Tailliez P., Quénée P., Chopin A., Estimation de la diversité parmi les souches de la collection des lactobacilles, Lait 76 (1996) 147-158.
  33. Van Kranenburg R., Vos H.R., Van Swam I.I., Kleerebezem M., De Vos W.M., Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression and diversity, J. Bacteriol. 181 (1999) 6347-6353.
  34. Wilkins M.R., Sanchez J.C., Gooley A., Appel R.D., Humphrey Smith I., Hochstrasser D.F., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it, Biotechnol. Gen. Eng. Rev. 13 (1995) 19-50.
  35. Zink R., Walker C., Schmidt G., Elli M., Pridmore D., Reniero R., Impact of multiple stress factors on the survival of dairy lactobacilli, Sci. Aliments 20 (2000) 119-126.

Abstract

Copyright INRA, EDP Sciences